留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

环保型复合降滤失剂的研制与应用

舒勇 江路明 杨俊 蒋官澄 王国帅 贺垠博

舒勇,江路明,杨俊,等. 环保型复合降滤失剂的研制与应用[J]. 钻井液与完井液,2023,40(1):35-40 doi: 10.12358/j.issn.1001-5620.2023.01.004
引用本文: 舒勇,江路明,杨俊,等. 环保型复合降滤失剂的研制与应用[J]. 钻井液与完井液,2023,40(1):35-40 doi: 10.12358/j.issn.1001-5620.2023.01.004
SHU Yong, JIANG Luming, YANG Jun, et al.Development and application of an environmentally friendly compound filter loss reducer[J]. Drilling Fluid & Completion Fluid,2023, 40(1):35-40 doi: 10.12358/j.issn.1001-5620.2023.01.004
Citation: SHU Yong, JIANG Luming, YANG Jun, et al.Development and application of an environmentally friendly compound filter loss reducer[J]. Drilling Fluid & Completion Fluid,2023, 40(1):35-40 doi: 10.12358/j.issn.1001-5620.2023.01.004

环保型复合降滤失剂的研制与应用

doi: 10.12358/j.issn.1001-5620.2023.01.004
基金项目: 国家自然科学基金重大项目“井筒工作液与天然气水合物储层作用机理和调控方法”(51991361)
详细信息
    作者简介:

    舒勇,高级工程师,博士,1972年生,现主要从事油气田开发及油气井化学工程方面的研究工作。E-mail:shuyong@petrochina.com.cn

    通讯作者:

    蒋官澄,教授,博士研究生导师。E-mail:m15600263100_1@163.com

  • 中图分类号: TE254.4

Development and Application of an Environmentally Friendly Compound Filter Loss Reducer

  • 摘要: 为从源头上控制钻井液对环境的污染,减少废弃钻井液处理难度和处理费用,实现绿色环保钻井。以生物质材料植物多酚、木质素磺酸钠和玉米淀粉为原料,通过交联改性,合成了一种复合降滤失剂PLS。其EC50为7.78×104 mg/L,BOD5/CODCr为5.05%,无毒且易生物降解。性能评价结果表明,含2%PLS的基浆在180 ℃下热滚16 h后中压滤失量仅为9.6 mL,且抗盐、抗钙性能优于羧甲基淀粉CMC-LV和两性离子淀粉接枝共聚物SAP。以PLS为唯一降滤失剂,配伍键合型润滑剂、双疏纳米封堵剂和仿生固壁剂等环保友好型处理剂,研制了一套环保型水基钻井液体系,并在大港油田某预探井的泥岩水平段进行了应用。应用井段内钻井液的流变与滤失性能稳定,摩阻低,泥饼薄而韧,无复杂情况发生,施工顺利。

     

  • 图  1  降滤失剂PLS的红外光谱图

    图  2  降滤失剂PLS的热重曲线

    图  3  降滤失剂PLS的TEM图片

    图  4  降滤失剂PLS加量对基浆降滤失性能的影响

    图  5  不同降滤失剂污染前后对基浆降滤失性能的影响

    表  1  PLS加量对钻井液体系基础性能的影响

    PLS/
    %
    AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    Gel/
    Pa/Pa
    FLAPI/
    mL
    FLHTHP/
    mL
    024.522.02.50.5/0.56.726.8
    1.038.030.08.01.5/5.03.210.2
    2.045.535.010.52.0/7.02.04.4
    3.049.538.011.52.5/8.01.84.0
      注:高温高压滤失量测试条件为140 ℃、3.5 MPa;钻井液的密度为1.3 g/cm3
    下载: 导出CSV

    表  2  环保钻井液体系的热稳定性

    T老化/
    t热滚/
    h
    AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    Gel/
    Pa/Pa
    FLAPI/
    mL
    FLHTHP/
    mL
    140044.036.08.01.0/5.0
    1645.535.010.52.0/7.02.04.4
    4842.533.09.51.5/6.02.25.0
    1501646.036.010.02.0/6.52.25.3
    1601641.533.08.51.0/5.52.47.9
    1701639.532.07.51.0/4.03.010.4
      注:高温高压滤失量测试温度与老化温度一致
    下载: 导出CSV

    表  3  环保钻井液被不同污染物入侵后的性能

    污染物AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    Gel/
    Pa/Pa
    FLAPI/
    mL
    FLHTHP/
    mL
    45.535.010.52.0/7.02.04.4
    10%NaCl46.036.010.01.5/6.02.05.0
    0.5%CaCl257.541.016.53.0/11.02.47.2
    10%评价土50.540.010.52.0/7.01.63.4
    10%岩屑粉45.035.010.01.0/6.01.63.2
      注:热滚条件为140 ℃、16 h;高温高压滤失量测试条件为140 ℃、3.5 MPa
    下载: 导出CSV

    表  4  钻井液体系的抑制、润滑与储层保护性能

    钻井液岩屑回
    收率/%
    线性
    膨胀/%
    极压润滑
    系数
    渗透率恢
    复值/%
    清水84.749.50.340
    环保钻井液体系97.818.70.11290.4
    现场钾胺基
    聚合物体系
    94.622.50.15381.5
      注:滚动回收条件为140 ℃、16 h;线性膨胀条件为140 ℃、3.5 MPa、16 h
    下载: 导出CSV

    表  5  环保钻井液体系不同井段的基本性能

    井深/
    m
    ρ/
    g·cm−3
    FV/
    s
    AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    Gel/
    Pa/Pa
    FLAPI/
    mL
    FLHTHP/
    mL
    25681.38634434102/52.2
    25831.44796448162/112.48.0
    26001.44685541142/52.48.0
    27921.44675642142/52.48.0
    29921.50705844142/52.26.0
    30161.50675244142/52.26.0
    32221.50646651152/52.46.0
    33781.50666248142/52.46.0
    35511.50645342112/52.66.0
    35881.50686146152/52.86.0
    下载: 导出CSV
  • [1] 孙金声,张希文. 钻井液技术的现状、挑战、需求与发展趋势[J]. 钻井液与完井液,2011,28(6):67-76. doi: 10.3969/j.issn.1001-5620.2011.06.022

    SUN Jinsheng, ZHANG Xiwen. Current status, challenges, needs and development trend of drilling fluid technology[J]. Drilling Fluid & Completion Fluid, 2011, 28(6):67-76. doi: 10.3969/j.issn.1001-5620.2011.06.022
    [2] 宿振国,王瑞和,刘均一,等. 高性能环保水基钻井液的研究与应用[J]. 钻井液与完井液,2021,38(5):576-582.

    SU Zhenguo, WANG Ruihe, LIU Junyi, et al. Research and application of high-performance environmentally friendly water-based drilling fluids[J]. Drilling Fluid & Completion Fluid, 2021, 38(5):576-582.
    [3] JIANG G, SUN J, HE Y, et al. Novel water-based drilling and completion fluid technology to improve wellbore quality during drilling and protect unconventional reservoirs[J]. Engineering, 2022(18):129-142.
    [4] 吴鑫磊,闫丽丽,王立辉,等. 环保型钻井液用降滤失剂研究进展[J]. 钻井液与完井液,2018,35(3):8-16. doi: 10.3969/j.issn.1001-5620.2018.03.002

    WU Xinlei, YAN Lili, WANG Lihui, et al. Research progress of filter loss reduction agents for environmentally friendly drilling fluids[J]. Drilling Fluid & Completion Fluid, 2018, 35(3):8-16. doi: 10.3969/j.issn.1001-5620.2018.03.002
    [5] 佟乐,雒旭,杨双春. 钻井液聚合物降滤失剂研究进展[J]. 应用化工,2018,47(7):1523-1527. doi: 10.3969/j.issn.1671-3206.2018.07.048

    TONG Le, LUO Xu, YANG Shuangchun. Research progress on polymeric filter loss reduction agents for drilling fluids[J]. Applied Chemistry, 2018, 47(7):1523-1527. doi: 10.3969/j.issn.1671-3206.2018.07.048
    [6] 罗健生,蒋官澄,王国帅,等. 一种无氯盐环保型强抑制水基钻井液体系[J]. 钻井液与完井液,2019,36(5):594-599. doi: 10.3969/j.issn.1001-5620.2019.05.012

    LUO Jiansheng, JIANG Guancheng, WANG Guoshuai, et al. A chlorine-free salt environmentally friendly strongly inhibited water-based drilling fluid system[J]. Drilling Fluid & Completion Fluid, 2019, 36(5):594-599. doi: 10.3969/j.issn.1001-5620.2019.05.012
    [7] LI X, JIANG G, SHEN X, et al. Application of tea polyphenols as a biodegradable fluid loss additive and study of the filtration mechanism[J]. ACS Omega, 2020, 5(7):3453-3461. doi: 10.1021/acsomega.9b03712
    [8] 朱建,陈慧,卢凯,等. 淀粉基生物可降解材料的研究新进展[J]. 高分子学报,2020,51(9):983-995. doi: 10.11777/j.issn1000-3304.2020.20089

    ZHU Jian, CHEN Hui, LU Kai, et al. New research advances in starch-based biodegradable materials[J]. Journal of Polymer Science, 2020, 51(9):983-995. doi: 10.11777/j.issn1000-3304.2020.20089
    [9] 王瑞珍,宋留名,刘朋,等. 木质素基表面活性剂研究现状[J]. 生物质化学工程,2020,54(3):61-68. doi: 10.3969/j.issn.1673-5854.2020.03.009

    WANG RuiZhen, SONG Liuming, LIU Peng, et al. Current status of research on lignin-based surfactants[J]. Biomass Chemical Engineering, 2020, 54(3):61-68. doi: 10.3969/j.issn.1673-5854.2020.03.009
    [10] 孔勇,杨枝,王治法,等. 淀粉改性研究及其在钻井液中的应用[J]. 应用化工,2016,45(11):2153-2157. doi: 10.16581/j.cnki.issn1671-3206.2016.11.003

    KONG Yong, YANG Zhi, WANG ZhiFa, et al. Study on starch modification and its application in drilling fluids[J]. Applied Chemistry, 2016, 45(11):2153-2157. doi: 10.16581/j.cnki.issn1671-3206.2016.11.003
    [11] 王伟吉. 抗温环保纳米纤维素降滤失剂的研制及特性[J]. 钻井液与完井液,2020,37(4):421-426. doi: 10.3969/j.issn.1001-5620.2020.04.003

    WANG Weiji. Development and properties of temperature-resistant and environmentally friendly nanocellulose filter loss reducing agents[J]. Drilling Fluid & Completion Fluid, 2020, 37(4):421-426. doi: 10.3969/j.issn.1001-5620.2020.04.003
    [12] CHANG X, SUN J, XU Z, et al. A novel nano-lignin-based amphoteric copolymer as fluid-loss reducer in water-based drilling fluids[J]. Colloids and Surfaces A Physicochemical and Engineering Aspects, 2019, 583:123979. doi: 10.1016/j.colsurfa.2019.123979
    [13] 刘自广,宋丰博,尤志良,等. 基于改性植物多酚的高温高密度环保型水基钻井液[J]. 钻井液与完井液,2021,38(3):285-291.

    LIU Ziguan, SONG Fengbo, YOU Zhiliang, et al. High-temperature, high-density, environmentally friendly water-based drilling fluids based on modified plant polyphenols[J]. Drilling Fluid & Completion Fluid, 2021, 38(3):285-291.
    [14] LI M, WU Q, HAN J, et al. Overcoming salt contamination of bentonite water-based drilling fluids with blended dual-functionalized cellulose nanocrystals[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(31):11569-11578.
    [15] MA X, YANG M, ZHANG M. Synthesis and properties of a betaine type copolymer filtrate reducer[J]. Chemical Engineering and Processing, 2020, 153:107953. doi: 10.1016/j.cep.2020.107953
    [16] HUANG Y, ZHANG D, ZHENG W. Synthetic copolymer (AM/AMPS/DMDAAC/SSS) as rheology modifier and fluid loss additive at HTHP for water-based drilling fluids[J]. Journal of Applied Polymer science, 2019, 136(30):47813. doi: 10.1002/app.47813
  • 加载中
图(5) / 表(5)
计量
  • 文章访问数:  749
  • HTML全文浏览量:  284
  • PDF下载量:  131
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-07
  • 修回日期:  2022-11-13
  • 刊出日期:  2023-01-31

目录

    /

    返回文章
    返回