留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Pickering乳液的油基钻井液

李超 狄雯雯 耿铁 任亮亮 高雅欣 郝田浩 孙德军

李超,狄雯雯,耿铁,等. 基于Pickering乳液的油基钻井液[J]. 钻井液与完井液,2023,40(1):28-34 doi: 10.12358/j.issn.1001-5620.2023.01.003
引用本文: 李超,狄雯雯,耿铁,等. 基于Pickering乳液的油基钻井液[J]. 钻井液与完井液,2023,40(1):28-34 doi: 10.12358/j.issn.1001-5620.2023.01.003
LI Chao, DI Wenwen, GENG Tie, et al.A Pickering emulsion oil based drilling fluid[J]. Drilling Fluid & Completion Fluid,2023, 40(1):28-34 doi: 10.12358/j.issn.1001-5620.2023.01.003
Citation: LI Chao, DI Wenwen, GENG Tie, et al.A Pickering emulsion oil based drilling fluid[J]. Drilling Fluid & Completion Fluid,2023, 40(1):28-34 doi: 10.12358/j.issn.1001-5620.2023.01.003

基于Pickering乳液的油基钻井液

doi: 10.12358/j.issn.1001-5620.2023.01.003
基金项目: 国家自然科学基金重点项目“开关型乳液体系处理含油污泥与原油回收化工过程的基础研究”(21938003)
详细信息
    作者简介:

    李超,硕士,现在从事钻井液工艺技术方面研究工作。电话18800021676;E-mail:lichao46@cosl.com.cn

  • 中图分类号: TE254.3

A Pickering Emulsion Oil Based Drilling Fluid

  • 摘要: Pickering乳液通过颗粒在油水界面吸附,形成稳定界面膜防止水滴聚并,能够提高油基钻井液的稳定性。然而,关于Pickering乳液油基钻井液的研究,忽略了油相中水滴和无机亲水颗粒间相互作用,均未考虑配浆时加入的氢氧化钙、加重剂以及地层中进入的劣质固相等无机颗粒对乳液中水滴存在形式的影响。因此,向W/O型Pickering乳液中加入氢氧化钙、重晶石和不同水化程度高岭土颗粒,通过宏观沉降实验和显微镜图像证明水滴与颗粒结合,以结合水形式存在,导致颗粒聚集;通过激光共聚焦显微镜和低温差示扫描量热对结合水进行表征。通过添加分散剂可以促进结合水颗粒的分散,提高钻井液体系的稳定性。基于W/O型Pickering乳液的油基钻井液不是油包水乳液,而是结合水颗粒在油相中适度分散的体系。此外,配制低密度油基钻井液模型体系,并调控体系的流变性能,实现低温恒流变。

     

  • 图  1  W/O型Pickering乳液高温前后不同时间下的沉降稳定性

    图  2  W/O型Pickering乳液高温前后显微镜照片

    图  3  水相为25% CaCl2盐水Pickering乳液 加入不同无机颗粒的显微镜照片

    图  4  W/O型Pickering乳液加入水化程度为5%不同含量高岭土颗粒的图片

    图  6  W/O型Pickering乳液加入水化程度为20%不同含量高岭土颗粒图片

    图  5  W/O型Pickering乳液加入水化程度为10%不同含量高岭土颗粒的图片

    图  7  W/O型Pickering乳液加入不同无机颗粒的显微镜照片

    图  8  水相为25% CaCl2盐水的W/O型Pickering乳液 加入氢氧化钙颗粒前后的激光共聚焦显微镜照片

    图  9  水相为去离子水的W/O型Pickering乳液 加入氢氧化钙颗粒激光共聚焦显微镜照片

    图  10  不同水相W/O型Pickering乳液加入氢氧化钙-T1分散体系的激光共聚焦显微镜照片

    图  11  W/O型Pickering乳液中加入 不同亲水颗粒的DSC曲线

    表  1  不含FSVIS模型钻井液体系的流变性能

    T/
    AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    φ600φ300φ200φ100φ6φ3
    427.514.03.555312314.04.54.0
    2023.019.04.046272013.04.03.5
    3517.514.03.535211610.54.03.5
    5014.011.03.02817139.03.53.5
    6512.09.03.02415128.53.53.0
    下载: 导出CSV

    表  2  含有FSVIS模型钻井液体系的流变性能

    T/
    AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    φ600φ300φ200φ100φ6φ3
    447.034.013.0946046331614.0
    2038.526.012.5775140291513.0
    3531.520.011.5634335261312.5
    5026.015.011.0523731241211.5
    6523.513.010.5473429231211.5
    下载: 导出CSV
  • [1] FU Lipei, MA Qianli, LIAO Kaili, et al. Application of Pickering emulsion in oil drilling and production[J]. Nanotechnology Reviews, 2022, 11(1):26-39.
    [2] DARGAHI-ZABOLI M, SAHRAEI E, POURABBAS B. Hydrophobic silica nanoparticle-stabilized invert emulsion as drilling fluid for deep drilling[J]. Petroleum Science, 2017, 14(1):105-115. doi: 10.1007/s12182-016-0135-0
    [3] DARGAHI-ZABOLI M, SAHRAEI E, POURABBAS B, et al. A simplified synthesis of silica Colloids with tunable hydrophobicity[J]. Colloid and Polymer Science, 2017, 295(5):925-932. doi: 10.1007/s00396-017-4079-8
    [4] GHOSN R, MIHELIC F, HOCHEPIED J F, et al. Silica nanoparticles for the stabilization of W/O emulsions at HTHP conditions for unconventional reserves drilling operations[J]. Oil & Gas Science and Technology, 2017, 72(4):21.
    [5] AGARWAL S, PHUOC T X, SOONG Y, et al. Nanoparticle-stabilised invert emulsion drilling fluids for deep-hole drilling of oil and gas[J]. The Canadian Journal of Chemical Engineering, 2013, 91(10):1641-1649. doi: 10.1002/cjce.21768
    [6] 艾加伟,庞敏,陈馥,等. DSW-S纳米颗粒对油基钻井液的稳定作用[J]. 油田化学,2016,33(1):5-8.

    AI Jiawei, PANG Min, CHEN Fu, et al. Effect of DSW-S nanoparticle on the stability of oil-based drilling fluid[J]. Oilfield Chemistry, 2016, 33(1):5-8.
    [7] 罗陶涛,段敏,杨刚. 基于Pickering乳状液的油基钻井液乳化稳定性能研究[J]. 钻采工艺,2015,38(1):99-101.

    LUO Taotao, DUAN Min, YANG Gang. Research on oil-based drilling fluid emulsion stability based on pickering emulsion[J]. Drilling & Production Technology, 2015, 38(1):99-101.
    [8] 罗陶涛,欧阳伟,苏志刚. 原位活化纳米材料提高油基钻井液乳化稳定性研究[J]. 钻井液与完井液,2014,31(4):5-7.

    LUO Taotao, OUTYANG Wei, SU Zhigang. Study on the emulsion stability of oil-base drilling fluid treated with in-situ activation nano material[J]. Drilling Fluid & Completion Fluid, 2014, 31(4):5-7.
    [9] DI Wenwen, ZHAO Chunhua, SUN Dejun, et al. Probing the state of water in oil-based drilling fluids[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 651:129770.
    [10] KOLOTOVA D, BRICHKA K, SIMONSEN G, et al. Droplet crystallization in water-in-crude oil emulsions: Influence of salinity and droplet size[J]. Energy & Fuels, 2017, 31(7):7673-7681.
    [11] HUANG Qunxing, MAO Feiyan, HAN Xu, et al. Characterization of emulsified water in petroleum sludge[J]. Fuel, 2014, 118:214-219.
    [12] YANG Jia, QIU Chaoying, LI Gyanghui, et al. Effect of diacylglycerol interfacial crystallization on the physical stability of water-in-oil emulsions[J]. Food Chemistry, 2020, 327:127014.
    [13] GHOSH S, TRAN T, ROUSSEAU D. Comparison of Pickering and network stabilization in water-in-oil emulsions. Langmuir, 2011, 27(11): 6589-6597.
    [14] GHOSH S, ROUSSEAU D. Freeze–thaw stability of water-in-oil emulsions[J]. Journal of Colloid and Interface Science, 2009, 339(1):91-102.
    [15] CLAUSSE D, GOMEZ F, PEZRON I, et al. Morphology characterization of emulsions by differential scanning calorimetry[J]. Advances in Colloid and Interface Science, 2005, 117(1):59-74.
    [16] CLAUSSE D, FOUCONNIER B, GOMEZ J A. Ripening phenomena in emulsions — A calorimetry investigation[J]. Journal of Dispersion Science and Technology, 2002, 23(1–3):379-391.
    [17] CLAUSSE D, GOMEZ F, DALMAZZONE C, et al. A method for the characterization of emulsions, thermogranulometry: Application to water-in-crude oil emulsion[J]. Journal of Colloid and Interface Science, 2005, 287(2):694-703.
    [18] TAKAMUKU T, YAMAGAMI M, WAKITA H, et al. Thermal property, structure, and dynamics of supercooled water in porous silica by calorimetry, neutron scattering, and NMR relaxation[J]. The Journal of Physical Chemistry B, 1997, 101(29):5730-5739.
    [19] ALCOUTLABI M, MCKENNA G B. Effects of confinement on material behaviour at the nanometre size scale[J]. Journal of Physics: Condensed Matter, 2005, 17(15):461-524.
    [20] 李兵. 现场油基钻井液固相粒度评价新方法[J]. 钻井液与完井液,2022,39(2):190-193.

    LI Bing. A new method for on-site PSD evaluation of oil based mud[J]. Drilling Fluid & Completion Fluid, 2022, 39(2):190-193.
    [21] 由福昌,文华,吴娇,等. 高密度无土相油基钻井液[J]. 钻井液与完井液,2022,39(2):146-150.

    YOU Fuchang, WEN Hua, WU Jiao, et al. High density clay-free oil based drilling fluid[J]. Drilling Fluid & Completion Fluid, 2022, 39(2):146-150.
    [22] 张立新,刘瑞. 高密度油基钻井液在阳101H3-6井长水平段的应用[J]. 钻探工程,2021,48(7):79-83.

    ZHANG Lixin, LIU Rui. Application of high-density oil-based drilling fluid in the long horizontal section of Well Yang 101H3-6[J]. Drilling Engineering, 2021, 48(7):79-83.
    [23] 范胜,周书胜,方俊伟,等. 高温低密度油基钻井液体系室内研究[J]. 钻井液与完井液,2020,37(5):561-565.

    FAN Sheng, ZHOU Shusheng, FANG Junwei,et al. Laboratory study on high temperature low density oil base drilling fluid[J]. Drilling Fluid & Completion Fluid, 2020, 37(5):561-565.
    [24] 骆小虎. 油基钻井液用有机土标准现状与探讨[J]. 钻井液与完井液,2020,37(5):566-571.

    LUO Xiaohu. The Status quo of the standards of organophilic clays for oil base drilling fluids and discussion thereof[J]. Drilling Fluid & Completion Fluid, 2020, 37(5):566-571.
    [25] 史赫,史海民,倪晓骁,等. 一种抗高温高密度无土相油基钻井液提切剂[J]. 钻井液与完井液,2022,39(1):8-14.

    SHI He, SHI Haimin, NI Xiaoxiao, et al. Study on rheological modifier of high temperature high density clay-free oil-based drilling fluid[J]. Drilling Fluid & Completion Fluid, 2022, 39(1):8-14.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  715
  • HTML全文浏览量:  281
  • PDF下载量:  111
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-03
  • 修回日期:  2022-10-12
  • 刊出日期:  2023-01-31

目录

    /

    返回文章
    返回