Specific Surface Area Measurement and Adsorption Characteristics of Drilling Fluid Weighting Materials
-
摘要: 深井超深井钻井过程中,为了平衡地层压力,需要在钻井液中加入加重材料。加重材料对钻井液中水分子和处理剂的吸附作用,会影响甚至恶化钻井液的性能。为了探究加重材料在钻井液中的存在形式及吸附特性,基于低场核磁共振,建立了液相条件下加重材料比表面积的测量方法。通过低场核磁共振法和粒度推算法,分析了密度为1.1~2.4 g/cm3的水基钻井液中加重材料液相与干粉状态的比表面积及其变化规律。通过有机碳吸附和流变性测试实验,探讨了不同密度下加重材料的吸附能力。结果表明,不同密度下加重材料对不同处理剂的吸附能力不同。在密度为1.2、1.8和2.4 g/cm3的500 mL钻井液中对磺化褐煤的吸附量分别为10.83、13.06和 17.69 g,实验结果与低场核磁共振所得到的比表面积具有相关性。Abstract: In deep and ultra-deep drilling, weighting materials are added to the drilling fluids to produce a pressure that is enough to balance the formation pressure. Weighting materials added to a drilling fluid can adsorb water and additives, thus affecting and even exacerbating the properties of the drilling fluid. To investigate the form and adsorptive characteristics of weighting materials in a drilling fluid, a method of measuring the specific surface area of a weighting material in a liquid has been established based on low-field nuclear-magnetic resonance (LF-NMR). The specific surface area of a weighting material in water based drilling fluids with densities between 1.1 g/cm3 and 2.4 g/cm3 and the specific surface area of the same weighting material in dry powder state, and the change of the specific surface area of the weighting material in liquid and as dry powder were analyzed using the LF-NMR method and particle size estimation method. The adsorption capacity of a weighting material in fluids of different densities were investigated through organic carbon adsorption experiment and rheology measurement. It was found that the weighting material in fluids of different densities has different adsorption capacities for different mud additives. In three 500 mL drilling fluids, each of which has a density of 1.2 g/cm3, 1.8 g/cm3 and 2.4 g/cm3, respectively, the adsorption capacities of the weighting material for sulfonated lignite were 10.83 g, 13.06 g and 17.69 g, respectively. This testing result can be correlated with the specific surface area results obtained with LF-NMR.
-
表 1 不同密度悬浮液中重晶石粉的比表面积(低场核磁共振法)
ρ/(g·cm−3) T2/ms R2 R2sp ω Ψ 比表面积/(cm2·g−1) 平均比表面积/(cm2·g−1) 1.1 889.220 0.001 125 1.91 0.1164 0.0306 2410.52 2405.520 891.650 0.001 122 1.90 0.1164 0.0306 2400.52 1.2 547.158 0.001 827 3.73 0.2135 0.0631 2283.68 2311.705 536.770 0.001 863 3.83 0.2135 0.0631 2339.73 1.4 383.330 0.002 609 5.76 0.3031 0.1011 2197.44 2198.520 383.010 0.002 611 5.76 0.3031 0.1011 2199.60 1.6 201.758 0.004 956 11.83 0.4876 0.2213 2065.57 2067.795 201.360 0.004 966 11.86 0.4876 0.2213 2070.02 1.8 159.340 0.006 276 15.25 0.5785 0.3192 1845.27 1842.555 159.780 0.006 259 15.21 0.5785 0.3192 1839.84 2.0 119.212 0.008 388 20.72 0.6535 0.4385 1824.77 1826.030 119.060 0.008 399 20.75 0.6535 0.4385 1827.29 2.2 85.660 0.011 674 29.24 0.7251 0.6134 1840.18 1845.095 85.220 0.011 734 29.39 0.7251 0.6134 1850.01 2.4 70.084 0.014 268 35.95 0.7609 0.7402 1875.51 1868.275 70.610 0.014 161 35.68 0.7609 0.7402 1861.04 注:R2f为0.000 386 表 2 重晶石粉比表面积测量结果(粒度推算法)
测试
次数比表面积/
cm2·g−1测试
次数比表面积/
cm2·g−11 2347 5 2344 2 2270 6 2362 3 2355 7 2270 4 2327 平均值 2325 注:相对标准偏差0.017 表 3 降滤失剂SMC在重晶石表面有机碳吸附实验
测试次数 吸附量 /mg 1 4.67 4.56 4.10 2 4.19 4.22 4.20 3 4.08 4.03 4.09 4 4.22 4.18 4.06 5 4.11 4.10 4.62 6 4.06 4.12 4.20 表 4 高密度实验浆的性能平行性测试实验
ρ实验浆/
g·cm−3测试
组别老化
条件PV/
mPa·sYP/
PaGel/
Pa/PaFL/
mL未加重 一组 老化前 10 7.0 1.0/1.0 8.0 老化后 11 5.0 1.0/1.0 7.9 二组 老化前 10 7.0 1.0/1.0 8.3 老化后 11 5.0 1.0/1.0 7.8 三组 老化前 10 7.0 1.0/1.0 8.5 老化后 11 5.0 1.0/1.0 7.5 四组 老化前 10 7.0 1.0/1.0 8.2 老化后 11 5.0 1.0/1.0 7.4 1.6 一组 老化前 43 5.5 1.5/2.0 7.1 老化后 33 4.5 1.0/1.5 7.3 二组 老化前 42 7.0 1.5/2.0 7.1 老化后 34 4.0 1.0/1.5 7.6 2.4 一组 老化前 62 7.5 2.0/3.0 11.4 老化后 49 3.5 1.5/2.0 9.8 二组 老化前 62 7.5 2.0/3.0 11.5 老化后 49 3.5 1.5/2.0 10.6 注:老化条件为180 ℃、16 h。 表 5 高密度实验浆的性能平行性测试实验
ρ实验浆/
g·cm−3SMC/
%老化
条件FL/
mLFLHTHP/
mL1.6 1.0 老化前 8.0 15.6 老化后
7.9 1.2 老化前 7.8 15.3 老化后 7.5 1.4 老化前 7.6 15.1 老化后 7.5 1.6 老化前 7.5 15.1 老化后 7.6 1.8 老化前 7.5 15.1 老化后 7.5 2.0 老化前 7.6 15.1 老化后 7.5 2.0 1.0 老化前 7.4 21.2 老化后 7.3 1.2 老化前 7.1 20.6 老化后 7.2 1.4 老化前 7.0 19.5 老化后 6.8 1.6 老化前 6.8 19.3 老化后 6.9 1.8 老化前 6.8 19.2 老化后 6.9 2.0 老化前 6.9 19.2 老化后 6.9 2.4 1.0 老化前 11.5 30.4 老化后 10.6 1.2 老化前 10.8 29.2 老化后 10.6 1.4 老化前 10.5 28.6 老化后 10.6 1.6 老化前 10.3 27.3 老化后 10.4 1.8 老化前 10.2 26.6 老化后 10.1 2.0 老化前 10.1 26.6 老化后 10.2 注:老化条件为180 ℃、16 h。 -
[1] 邱正松,赵冲,张现斌,等. 超高温高密度油基钻井液研究与性能评价[J]. 钻井液与完井液,2021,38(6):663-670.QIU Zhengsong, ZHAO Chong, ZHANG Xianbin, et al. Research and performance evaluation of ultra-high temperature and high density oil-based drilling fluid[J]. Drilling Fluid & Completion Fluid, 2021, 38(6):663-670. [2] 蔡勇,郭保雨,何兴华,等. 新型高密度钻井液加重剂的性能评价及应用[J]. 钻采工艺,2020,43(1):106-109. doi: 10.3969/J.ISSN.1006-768X.2020.01.30CAI Yong, GUO Baoyu, HE Xinghua, et al. Performance evaluation and application of new high density drilling fluid weighting agent[J]. Drilling and Production Technology, 2020, 43(1):106-109. doi: 10.3969/J.ISSN.1006-768X.2020.01.30 [3] 潘谊党,于培志,马京缘. 高密度钻井液加重材料沉降问题研究进展[J]. 钻井液与完井液,2019,36(1):1-9. doi: 10.3969/j.issn.1001-5620.2019.01.001PAN yidang, YU Peizhi, MA Jingyuan. Research progress on heavy material settlement of high density drilling fluid[J]. Drilling Fluid & Completion Fluid, 2019, 36(1):1-9. doi: 10.3969/j.issn.1001-5620.2019.01.001 [4] 李雄,董晓强,金军斌,等. 超高温高密度钻井液体系的研究与应用[J]. 钻井液与完井液,2020,37(6):694-700. doi: 10.3969/j.issn.1001-5620.2020.06.003LI Xiong, DONG Xiaoqiang, JIN Junbin, et al. Research and application of ultra-high temperature and high density drilling fluid system[J]. Drilling Fluid & Completion Fluid, 2020, 37(6):694-700. doi: 10.3969/j.issn.1001-5620.2020.06.003 [5] 夏孝杰. 塔中北坡地区抗高温超高密度钻井液优化实验研究[D]. 中国石油大学(华东), 2019.XIA Xiaojie. Experimental study on optimization of high temperature resistant ultra-high density drilling fluid in the northern slope of Tazhong [D]. China University of Petroleum (East China), 2019. [6] 邱正松,韩成,黄维安. 国外高密度微粉加重剂研究进展[J]. 钻井液与完井液,2014,31(3):78-82. doi: 10.3969/j.issn.1001-5620.2014.03.021QIU Zhengsong, HAN Cheng, HUANG Wei'an. Research progress of foreign high-density powder weighting agents[J]. Drilling Fluid & Completion Fluid, 2014, 31(3):78-82. doi: 10.3969/j.issn.1001-5620.2014.03.021 [7] CHOMA J, JAGIELL O J, JARONIE C M. Assessing the contribution of micropores and mesopores from nitrogen adsorption on nanoporous carbons: Application to pore size analysis[J]. Carbon, 2021, 183:150-157. doi: 10.1016/j.carbon.2021.07.020 [8] WOOD D A. Deriving coal fractal dimensions from low-pressure nitrogen adsorption isotherms applying an integrated method[J]. Applied Geochemistry, 2021:131-139. [9] WANG Z, CHENG Y, WANG G, et al. Comparative analysis of pore structure parameters of coal by using low pressure argon and nitrogen adsorption[J]. Fuel, 2022:309-316. [10] LIN Y, QIAN Q, CHEN Z, et al. Fabrication of high specific surface area TiO2 nanopowders by anodization of porous titanium[J]. Electrochemistry Communications, 2022:188-192. [11] LIU Y, CHEN L, TANG Y, et al. Synthesis and characterization of nano-SiO2@ octadecylbisimidazoline quaternary ammonium salt used as acidizing corrosion inhibitor[J]. Reviews on Advanced Materials Science, 2022, 61(1):186-194. doi: 10.1515/rams-2022-0006 [12] 董晓强,李雄,方俊伟,等. 高密度钻井液高温静态沉降稳定性室内研究[J]. 钻井液与完井液,2020,37(5):626-630.DONG Xiaoqiang, LI Xiong, FANG Junwei, et al. Laboratory study on high temperature static settlement stability of high density drilling fluid[J]. Drilling Fluid & Completion Fluid, 2020, 37(5):626-630. -