留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

降阻剂聚集形态与降阻性能研究

石阳 许可 邹存虎 郭建春 杜雨柔 马应娴 李阳

石阳,许可,邹存虎,等. 降阻剂聚集形态与降阻性能研究[J]. 钻井液与完井液,2022,39(6):776-786 doi: 10.12358/j.issn.1001-5620.2022.06.017
引用本文: 石阳,许可,邹存虎,等. 降阻剂聚集形态与降阻性能研究[J]. 钻井液与完井液,2022,39(6):776-786 doi: 10.12358/j.issn.1001-5620.2022.06.017
SHI Yang, XU Ke, ZOU Cunhu, et al.Study on aggregation morphology and resistance reducing properties of drag reducing agents[J]. Drilling Fluid & Completion Fluid,2022, 39(6):776-786 doi: 10.12358/j.issn.1001-5620.2022.06.017
Citation: SHI Yang, XU Ke, ZOU Cunhu, et al.Study on aggregation morphology and resistance reducing properties of drag reducing agents[J]. Drilling Fluid & Completion Fluid,2022, 39(6):776-786 doi: 10.12358/j.issn.1001-5620.2022.06.017

降阻剂聚集形态与降阻性能研究

doi: 10.12358/j.issn.1001-5620.2022.06.017
基金项目: 中石油科技管理部课题“超高温清洁压裂液与变黏功能滑溜水研究”(2020B-4120);国家自然科学基金“超深层新型抗高温聚合物冻胶压裂液及耐温减阻机制”(51834010)
详细信息
    作者简介:

    石阳,1983年生,中石油勘探院企业技术专家。电话 13426012619,E-mail:shy312@petrochina.com.cn

    通讯作者:

    许可,电话 13283230929,E-mail:xk0929@163.com

  • 中图分类号: TE357.12

Study on Aggregation Morphology and Resistance Reducing Properties of Drag Reducing Agents

  • 摘要: 为明确滑溜水压裂液降阻剂宏观降阻性能的微观控制机制,利用环境扫描电镜对不同类型的聚合物降阻剂形成的聚集体结构进行大量微观表征,结合体系降阻性能测试,从聚合物分子聚集态层次揭示浓度对不同降阻剂体系降阻性能作用的微观机理。研究发现,滑溜水降阻剂在极低浓度下聚集形成丝状结构,随着降阻剂浓度的不断提高,这些丝线状结构逐渐缠结连接形成骨架,最终围成多层次的“蛛网状”聚集体网络结构。同时不同类型的滑溜水降阻剂所形成的网络结构又具有各自的特点,其中以乳液型和悬浮液型降阻剂网络结构最为完整,而粉剂型降阻剂由于溶解速度较慢,形成聚集体网络结构分布不均,网络强度普遍不高。降阻剂浓度对降阻剂聚集状态影响极大,在低浓度条件下,3种降阻剂形成的网络结构平均骨架厚度约为0.1~0.3 μm。随着降阻剂浓度的增大,体系网眼形状由不规则逐渐转变为多边形,部分降阻剂可形成强度较高、稳定性较好的圆形网络支撑结构,网眼尺寸减小,骨架厚度增加。当降阻剂浓度增加为0.05%时,骨架厚度可达0.3~0.9 μm,网络结构强度显著提高。滑溜水降阻剂形成的聚集体网络结构会对体系降阻性能产生重要影响,降阻剂加量与体系降阻性能之间并非表现出简单的线性关系,只有在合适浓度下形成的适中尺寸的聚集体网络结构才能与体系中的水分子紧密作用,稳定溶液流动状态,减少湍流脉动,降低湍流流动过程中的能量耗散,最终实现高效降阻的效果。

     

  • 图  1  三类降阻剂聚集状态临界浓度

    图  2  乳液型R-4降阻剂不同浓度下的微观形貌结构

    图  3  粉剂型F-2降阻剂不同浓度下的微观形貌结构

    图  4  悬浮液型X-2降阻剂不同浓度下的微观形貌结构

    图  5  不同浓度悬浮液型X-2降阻剂的降阻率变化曲线

    图  6  悬浮液型X-2降阻剂不同浓度下的微观形貌结构

    图  7  悬浮液型X-2降阻剂溶液微观网眼 结构参数及体系降阻率变化情况

    图  8  不同浓度乳液型R-4降阻剂的降阻率变化曲线

    图  9  乳液型R-4降阻剂不同浓度下的微观形貌结构

    图  10  乳液型R-4降阻剂微观网眼结构 参数及体系降阻率变化情况

    表  1  乳液型降阻剂微观网络结构参数统计表

    降阻剂降阻剂/%网眼形状网络强度模糊评价平均网眼直径/μm网眼壁厚/μm结节程度模糊评价结节尺寸/μm
    R-10.0001不规则0.113.630.250.71.11~2.54
    0.0100多边形0.75.440.220
    0.0500圆形0.82.720.370
    R-20.0010不规则0.10.130.92.11~9.58
    0.0100多边形0.49.320.180.80.41~1.83
    0.0500多边形0.58.480.240.30.58~0.92
    R-30.0010多边形0.213.250.160.60.32~2.03
    0.0100圆形0.511.530.640
    0.0500圆形0.67.680.830
    R-40.0010不规则0.30.160.70.26~1.64
    0.0100多边形0.58.650.320
    0.0500多边形0.81.740.670
    下载: 导出CSV

    表  2  粉剂型降阻剂微观网络结构参数统计表

    降阻剂降阻剂/%网眼形状网络强度模糊评价平均网眼直径/μm网眼壁厚/μm结节程度模糊评价结节尺寸/μm
    F-10.0010不规则0.11.920.110.40.25~1.51
    0.0100不规则0.56.760.280.60.33~1.74
    0.0500不规则0.68.450.340.20.66~1.18
    F-20.0010不规则0.20.070.70.74~2.95
    0.0100不规则0.57.420.250.70.41~2.72
    0.0500多边形0.65.690.330.30.73~3.21
    下载: 导出CSV

    表  3  悬浮液型降阻剂微观网络结构参数统计表

    降阻剂降阻剂/%网眼形状网络强度模糊评价平均网眼直径/μm网眼壁厚/μm结节程度模糊评价结节尺寸/μm
    X-10.0010不规则0.29.340.310.40.33~1.42
    0.0100多边形0.67.680.350
    0.0500多边形0.84.560.440
    X-20.0001不规则0.313.530.080.20.39~0.86
    0.0100不规则0.58.470.230.60.54~1.18
    0.0500圆形0.82.520.520
    X-30.0001不规则0.48.530.160.40.28~2.17
    0.0100多边形0.36.860.420.10.41~1.15
    0.0500多边形0.56.270.370.30.67~2.08
    X-40.0010不规则0.37.380.190.40.27~4.48
    0.0100多边形0.76.820.320.30.36~1.16
    0.0500多边形0.65.390.430.30.49~1.25
    下载: 导出CSV

    表  4  不同浓度的悬浮液型X-2降阻剂微观网络参数及降阻率统计表

    降阻剂降阻剂/%网眼形状网络强度模糊评价平均网眼直径/μm网眼壁厚/μm结节程度模糊评价降阻率/%
    X-20.02不规则0.67.140.280.221
    0.03多边形0.75.680.450.137
    0.05圆形0.82.520.52050
    0.10圆形0.91.550.71072
    下载: 导出CSV

    表  5  不同浓度的乳液型R-4降阻剂微观网络参数及降阻率统计表

    降阻剂降阻剂/%网眼形状网络强度模糊评价平均网眼直径/μm网眼壁厚/μm结节程度模糊评价降阻率/%
    R-40.05多边形0.81.740.67069.0
    0.10圆形0.91.730.72075.0
    0.15圆形0.91.350.81073.0
    0.20圆形1.01.050.96072.5
    0.25圆形1.00.911.21070.0
    下载: 导出CSV
  • [1] 刘洪林,王红岩,刘人和,等. 非常规油气资源发展现状及关键问题[J]. 天然气工业,2009(9):113-116,146.

    LIU Honglin, WANG Hongyan, LIU Renhe, et al. Current situation and key problems of unconventional oil and gas resources development[J]. Natural Gas Industry, 2009(9):113-116,146.
    [2] ZARGARI S. Field development strategies for Bakken shale formation[D]. Morgantown: West Virginia University, 2010.
    [3] DONG K X, JIANG M Z, LI J B, et al. Research progresses in formation mechanism of complex fracture network for unconventional reservoir[J]. Arabian Journal of Geosciences, 2020, 13(15):1-10.
    [4] 潘继平. 非常规天然气资源开发政策困境及对策建议[J]. 石油科技论坛,2019(39):1-7. doi: 10.3969/j.issn.1002-302x.2019.01.001

    PAN Jiping. Difficulties of unconventional natural gas resource development policies and countermeasures[J]. Petroleum Science and Technology Forum, 2019(39):1-7. doi: 10.3969/j.issn.1002-302x.2019.01.001
    [5] 陈昊,毕凯琳,张军,等. 非常规油气开采压裂用降阻剂研究进展[J]. 油田化学,2021,38(2):347-359.

    CHEN Hao, BI Kailin, ZHANG Jun, et al. Research progress of drag reducing agents for unconventional oil and gas production fracturing[J]. Oilfield Chemistry, 2021, 38(2):347-359.
    [6] HAO B A, Fz A, Mz A, et al. Optimization and friction reduction study of a new type of viscoelastic slickwater system[J]. Journal of Molecular Liquids, 2021, 344:117876. doi: 10.1016/j.molliq.2021.117876
    [7] 蒋廷学,卞晓冰,王海涛,等. 深层页岩气水平井体积压裂技术[J]. 天然气工业,2017,37(1):90-96. doi: 10.3787/j.issn.1000-0976.2017.01.011

    JIANG Tingxue, BIAN Xiaobing, WANG Haitao, et al. Volume fracturing technology for deep shale gas horizontal wells[J]. Natural Gas Industry, 2017, 37(1):90-96. doi: 10.3787/j.issn.1000-0976.2017.01.011
    [8] 姚奕明,魏娟明,杜涛,等. 深层页岩气压裂滑溜水技术研究与应用[J]. 精细石油化工,2019,36(4):15-19. doi: 10.3969/j.issn.1003-9384.2019.04.004

    YAO Yiming, WEI Juanming, DU Tao, et al. Research and application of gas fracturing and sliding water technology for deep shale[J]. Fine Petrochemical, 2019, 36(4):15-19. doi: 10.3969/j.issn.1003-9384.2019.04.004
    [9] 柳慧,侯吉瑞,王宝峰. 降阻水及其添加剂的研究进展及展望[J]. 广州化工,2012,40(11):35-37. doi: 10.3969/j.issn.1001-9677.2012.11.014

    LIU Hui, HOU Jirui, WANG Baofeng. Research progress and prospect of drag reducing water and its additives[J]. Guangzhou Chemical Industry, 2012, 40(11):35-37. doi: 10.3969/j.issn.1001-9677.2012.11.014
    [10] 刘致屿. 滑溜水压裂液降阻机理研究[D]. 北京: 中国石油大学(北京), 2019.

    LIU Zhiyu. Study on mechanism of resistance reduction of slippery hydraulic fracturing fluid[D]. Beijing: China University of Petroleum (Beijing), 2019.
    [11] SUN Y, WU Q, BAI B, et al. The flow behavior of friction reducer in microchannels during slickwater fracturing[C]//SPE Production and Operations Symposium, Oklahoma, USA, 2013.
    [12] FU Z, IWAKI Y, MOTOZAWA M, et al. Characteristic turbulent structure of a modified drag-reduced surfactant solution flow via dosing water from channel wall[J]. International Journal of Heat and Fluid Flow, 2015, 53:135-145. doi: 10.1016/j.ijheatfluidflow.2015.03.006
    [13] YANG S Q, DING D. Drag-reducing flows in laminar-turbulent transition region[J]. Journal of Fluids Engineering, 2014, 136(10):1-9.
    [14] PAKTINAT J, O’NEIL B, AFTEN C, et al. Critical evaluation of high brine tolerant additives used in shale slick water fracs[C]//SPE production and operations symposium, Oklahoma, USA, 2011.
    [15] CHENG Y. Impact of water dynamics in fractures on the performance of hydraulically fractured wells in gas-shale reservoirs[J]. Journal of Canadian Petroleum Technology, 2012, 51(2):143-151. doi: 10.2118/127863-PA
    [16] BRONIARZ-PRESS L, ROZANSKI J, ROZANSKA S. Drag reduction effect in pipe systems and liquid falling film flow[J]. Reviews in Chemical Engineering, 2007, 23(3):149-246.
    [17] 李涛,陆丹. 利用指数律了解溶液中复杂高分子单链及聚集态结构的形状特征[J]. 化学学报,2016,74(8):649-656.

    LI Tao, LU Dan. Using exponential law to understand the shape characteristics of single chain and aggregate structures of complex polymers in solution[J]. Journal of Chemistry, 2016, 74(8):649-656.
    [18] 冯绪胜, 刘洪国, 郝京诚. 胶体化学[M]. 北京: 化学工业出版社, 2005.

    FENG Xusheng, LIU Hongguo, HAO Jingcheng. Colloid chemistry[M]. Beijing: Chemical Industry Press, 2005.
    [19] 张师愚, 夏厚林. 物理化学[M]. 北京: 中国医药科技出版社, 2014.

    ZHANG Shiyu, XIA Houlin. Physical chemistry[M]. Beijing: China Pharmaceutical Science and Technology Press, 2014.
    [20] 秦雅玲. 基于数字图像的丁达尔现象与胶体溶液浓度检测方法研究[D]. 桂林: 桂林理工大学, 2020.

    QIN Yaling. Study on detection method of tindall phenomenon and colloid solution concentration based on digital Image[D]. Guilin: Guilin University of Technology, 2020.
    [21] 许可,侯宗锋,翁定为,等. 耐高温压裂液及其添加剂研究进展[J]. 当代化工,2022,51(4):936-940. doi: 10.3969/j.issn.1671-0460.2022.04.039

    XU Ke, HOU Zongfeng, WENG Dingwei, et al. Research progress of high temperature resistant fracturing fluid and its additives[J]. Contemporary Chemical Industry, 2022, 51(4):936-940. doi: 10.3969/j.issn.1671-0460.2022.04.039
    [22] 卜涛. 滑溜水用耐盐速溶减阻剂的制备与应用研究[D]. 成都: 西南石油大学, 2018.

    BU Tao. Study on preparation and application of salt resistant instant drag deducing agent for slippery water[D]. Chengdu: Southwest Petroleum University, 2018.
    [23] 廖子涵,陈馥,卜涛,等. 水包水乳液减阻剂的减阻机理研究[J]. 石油化工,2019,48(7):724-730. doi: 10.3969/j.issn.1000-8144.2019.07.011

    LIAO Zihan, CHEN Fu, BU Tao, et al. Study on drag reduction mechanism of water in water lotion drag reducer[J]. Petrochemical industry, 2019, 48(7):724-730. doi: 10.3969/j.issn.1000-8144.2019.07.011
    [24] 刘晓瑞,周福建,石华强,等. 聚合物减阻剂微观减阻机理研究[J]. 石油化工,2017,46(1):97-102. doi: 10.3969/j.issn.1000-8144.2017.01.014

    LIU Xiaorui, ZHOU Fujian, SHI Huaqiang, et al. Study on micro drag reduction mechanism of polymer drag reducing agent[J]. Petrochemical Industry, 2017, 46(1):97-102. doi: 10.3969/j.issn.1000-8144.2017.01.014
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  426
  • HTML全文浏览量:  246
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-15
  • 修回日期:  2022-10-08
  • 刊出日期:  2022-11-30

目录

    /

    返回文章
    返回