留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温及超高温下水泥石力学及孔渗特性变化规律

丁建新 席岩 蒋记伟 王海涛 李雪松 李辉

丁建新,席岩,蒋记伟,等. 高温及超高温下水泥石力学及孔渗特性变化规律[J]. 钻井液与完井液,2022,39(6):754-760 doi: 10.12358/j.issn.1001-5620.2022.06.014
引用本文: 丁建新,席岩,蒋记伟,等. 高温及超高温下水泥石力学及孔渗特性变化规律[J]. 钻井液与完井液,2022,39(6):754-760 doi: 10.12358/j.issn.1001-5620.2022.06.014
DING Jianxin, XI Yan, JIANG Jiwei, et al.Changes of mechanics and characteristics of porosity and permeability of set cement at high and ultra-high temperatures[J]. Drilling Fluid & Completion Fluid,2022, 39(6):754-760 doi: 10.12358/j.issn.1001-5620.2022.06.014
Citation: DING Jianxin, XI Yan, JIANG Jiwei, et al.Changes of mechanics and characteristics of porosity and permeability of set cement at high and ultra-high temperatures[J]. Drilling Fluid & Completion Fluid,2022, 39(6):754-760 doi: 10.12358/j.issn.1001-5620.2022.06.014

高温及超高温下水泥石力学及孔渗特性变化规律

doi: 10.12358/j.issn.1001-5620.2022.06.014
基金项目: 国家自然科学基金青年基金项目“基于压裂过程中四维地质力学的套管变形机理及控制方法研究”(52004013);中国石油项目“钻完井及井下作业智能优化系统研发-基于智能计算理论的多场耦合作用下井筒完整性评价与控制参数优化技术研究(2021DJ7401)”
详细信息
    作者简介:

    丁建新,高级工程师,1980年生,获得北京大学工程硕士学位,长期从事油田技术服务行业数字化转型的技术研究工作

    通讯作者:

    席岩,副教授,1985年生,2019年毕业于中国石油大学(北京)油气井工程专业,现在主要从事井筒完整性、岩石动力学方面的研究。E-mail:xiyan@bjut.edu.cn

  • 中图分类号: TE256.9

Changes of Mechanics and Characteristics of Porosity and Permeability of Set Cement at High and Ultra-High Temperatures

  • 摘要: 页岩油原位注热开采过程中,井筒温度处于高温或者超高温状态,容易导致水泥环密封完整性失效,开展水泥石在高温及超高温下的力学特性和孔渗特征变化规律极为重要。对此,研究了不同温度热处理条件下水泥石力学特性的变化,基于数字图像相关技术,分析了高温处理后水泥石破坏模式的变化,采用低场核磁共振技术对于热处理后水泥石孔隙度和渗透率的变化规律进行了研究,并分析了孔隙度与渗透率关系的相关性。研究结果表明,对于高温处理后的水泥石试样,随着热处理温度的不断增加,水泥石单轴压缩强度先增加、后减少。试样的孔隙度和渗透率不断增加,其规律为先缓慢增加、后快速增加,主要是因为热处理温度较低时,产生的主要是微、小孔隙且并未发生连通;随着热处理温度的不断提升,部分微、小孔隙聚合成为中、大孔,且不同级别的孔隙之间出现连通,进而导致渗透率显著升高。研究结果对于页岩油原位注热开采过程中水泥环密封完整性的保护以及水泥浆配方的优化具有重要的参考意义。

     

  • 图  1  高温后水泥石样品形态

    图  2  水泥石样品单轴压缩强度随温度变化

    图  3  单轴压缩过程中DIC观测结果

    图  4  水泥石核磁信号变化规律

    图  5  水泥石孔隙度随热处理温度的变化规律

    图  6  水泥石核磁样品成像变化

    图  7  水泥石渗透率随热处理温度的变化规律

    图  8  水泥石孔隙度和渗透率的关系

  • [1] LIU KUI, GAO DELI, TALEGHANI A D. Analysis on integrity of cement sheath in the vertical section of wells during hydraulic fracturing[J]. Journal of Petroleum Science and Engineering, 2018, 168:370-379. doi: 10.1016/j.petrol.2018.05.016
    [2] XI YAN, LI JUN, TAO QIAN, et al. Experimental and numerical investigations of accumulated plastic deformation in cement sheath during multistage fracturing in shale gas wells[J]. Journal of Petroleum Science and Engineering, 2020, 187:106790. doi: 10.1016/j.petrol.2019.106790
    [3] XI YAN, LIAN WEI, FAN LIFENG, et al. Research and engineering application of pre-stressed cementing technology for preventing micro-annulus caused by cyclic loading-unloading in deep shale gas horizontal wells[J]. Journal of Petroleum Science and Engineering, 2021, 200:108359. doi: 10.1016/j.petrol.2021.108359
    [4] 纪宏飞,肖云峰,郭雪利,等. 水泥环密封安全系数法在稠油热采井的应用[J]. 石油机械,2021,49(6):97-103. doi: 10.16082/j.cnki.issn.1001-4578.2021.06.014

    JI Hongfei, XIAO Yunfeng, GUO Xueli, et al. Application of cement sheath sealing safety coefficient method in heavy oil thermal recovery well[J]. China Petroleum Machinery, 2021, 49(6):97-103. doi: 10.16082/j.cnki.issn.1001-4578.2021.06.014
    [5] 张华,靳建洲,刘明涛,等. 稠油热采井抗 350 ℃高温硅酸盐基水泥浆[J]. 钻井液与完井液,2020,37(4):363-366.

    ZHANG Hua, JIN Jianzhou, LIU Mingtao, et al. A 350 ℃ high temperature silicate cement slurry used in cementing heavy oil thermal production wells[J]. Drilling Fluid & Completion Fluid, 2020, 37(4):363-366.
    [6] 苏东华,黄盛,李早元,等. 页岩油水平井压裂水泥环力学性能设计方法[J]. 石油勘探与开发,2022,49(4):798-805. doi: 10.11698/PED.20220019

    SU Donghua, HUANG Sheng, LI Zaoyuan, et al. Mechanical property design method of cement sheath in a horizontal shale oil well under fracturing conditions[J]. Petroleum Exploration and Development, 2022, 49(4):798-805. doi: 10.11698/PED.20220019
    [7] 何军,黄昭,张清,等. 低熟页岩油高温开采井筒完整性[J]. 科学技术与工程,2021,21(5):1752-1757. doi: 10.3969/j.issn.1671-1815.2021.05.012

    HE Jun, HUANG Zhao, ZHANG Qing, et al. Wellbore integrity of high temperature production of immature shale oil[J]. Science Technology and Engineering, 2021, 21(5):1752-1757. doi: 10.3969/j.issn.1671-1815.2021.05.012
    [8] 步玉环,常智杨,邵子璇,等. 适用于稠油热采井热膨胀水泥的外掺料优选[J]. 钻井液与完井液,2016,33(4):87-91.

    BU Yuhuan, CHANG Zhiyang, SHAO Zixuan, et al. Optimization of admixture for thermal expansion cement used for cementing heavy oil thermal recovery well[J]. Drilling Fluid & Completion Fluid, 2016, 33(4):87-91.
    [9] 程小伟,张明亮,李早元,等. 火烧油层工况下加砂油井水泥石失效演化研究[J]. 硅酸盐通报,2016,35(8):2335-2340. doi: 10.16552/j.cnki.issn1001-1625.2016.08.002

    CHENG Xiaowei, ZHANG Mingliang, LI Zaoyuan, et al. Failure evolution of oil-well cement mixed with sand under in-situ combustion[J]. Bulletin of The Chinese Ceramic Society, 2016, 35(8):2335-2340. doi: 10.16552/j.cnki.issn1001-1625.2016.08.002
    [10] 王磊,曾义金,张青庆,等. 高温环境下油井水泥石力学性能实验[J]. 中国石油大学学报(自然科学版),2018,42(6):88-95.

    WANG Lei, ZENG Yijin, ZHANG Qingqing, et al. Experimental study on mechanical properties of oil well cement under high temperature[J]. Journal of China University of Petroleum( Edition of Natural Science), 2018, 42(6):88-95.
    [11] 武治强,吴怡,岳家平,等. 超高温条件下热稳定剂对水泥环完整性影响研究[J]. 重庆科技学院学报(自然科学版),2021,23(5):48-52. doi: 10.19406/j.cnki.cqkjxyxbzkb.2021.05.010

    WU Zhiqiang, WU Yi, YUE Jiaping, et al. Study on the effect of heat stabilizer on the integrity of cement sheath under ultra-high temperature[J]. Journal of Chongqing University of Science and Technology(Natural Sciences Edition), 2021, 23(5):48-52. doi: 10.19406/j.cnki.cqkjxyxbzkb.2021.05.010
    [12] 曾泉树,汪志明,孙立伟,等. 考虑各向异性的蒸汽吞吐效果及见水时间预测[J]. 断块油气田,2022,29(3):395-398.

    ZENG Quanshu, WANG Zhiming, SUN Liwei, et al. Cyclic steam stimulation effect considering anisotropy and water breakthrough time prediction[J]. Fault-Block Oil & Gas Field, 2022, 29(3):395-398.
    [13] 周晓义,肖武林,王美成,等. 新疆风城油田稠油热采高温封堵剂研究与现场实验[J]. 石油钻探技术,2021,49(6):113-117. doi: 10.11911/syztjs.2021132

    ZHOU Xiaoyi, XIAO Wulin, WANG Meicheng, et al. Study and field test on a high temperature plugging agent for the thermal recovery of heavy oil in the Fengcheng Oilfield, Xinjiang[J]. Petroleum Drilling Techniques, 2021, 49(6):113-117. doi: 10.11911/syztjs.2021132
    [14] 黄非,宫婷婷. 基于磁分离技术的油页岩原位开采实验-以吉林省桦甸市油页岩为例[J]. 大庆石油地质与开发,2022,41(4):154-160.

    HUANG Fei, GONG Tingting. In-situ exploitation experiment of oil shale based on magnetic separating technology: Take oil shale in Huadian City of Jilin Province as an example[J]. Petroleum Geology & Oilfield Development in Daqing, 2022, 41(4):154-160.
    [15] 赵静,刘增琪,康志勤,等. 原位开采状态下油页岩渗透特性演化规律研究[J]. 岩石力学与工程学报,2021,40(5):892-901. doi: 10.13722/j.cnki.jrme.2020.0521

    ZHAO Jing, LIU Zengqi, KANG Zhiqin, et al. Study on evolution of permeability characteristics of oil shale under in-situ exploitation[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(5):892-901. doi: 10.13722/j.cnki.jrme.2020.0521
  • 加载中
图(8)
计量
  • 文章访问数:  541
  • HTML全文浏览量:  223
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-10
  • 修回日期:  2022-06-25
  • 刊出日期:  2022-11-30

目录

    /

    返回文章
    返回