留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

形状差异的岩屑颗粒沉降规律及曳力系数模型

王贵 谭凯 曹成

王贵,谭凯,曹成. 形状差异的岩屑颗粒沉降规律及曳力系数模型[J]. 钻井液与完井液,2022,39(6):707-713 doi: 10.12358/j.issn.1001-5620.2022.06.007
引用本文: 王贵,谭凯,曹成. 形状差异的岩屑颗粒沉降规律及曳力系数模型[J]. 钻井液与完井液,2022,39(6):707-713 doi: 10.12358/j.issn.1001-5620.2022.06.007
WANG Gui, TAN Kai, CAO Cheng.Settling behavior and drag coefficient model of rock cuttings of varied shapes[J]. Drilling Fluid & Completion Fluid,2022, 39(6):707-713 doi: 10.12358/j.issn.1001-5620.2022.06.007
Citation: WANG Gui, TAN Kai, CAO Cheng.Settling behavior and drag coefficient model of rock cuttings of varied shapes[J]. Drilling Fluid & Completion Fluid,2022, 39(6):707-713 doi: 10.12358/j.issn.1001-5620.2022.06.007

形状差异的岩屑颗粒沉降规律及曳力系数模型

doi: 10.12358/j.issn.1001-5620.2022.06.007
基金项目: 国家自然科学基金“裂缝性漏失桥接堵漏颗粒动力学行为细观模拟研究”(51604237)
详细信息
    作者简介:

    王贵,博士,副教授,1982年生,主要从事复杂深井及非常规油气钻井液理论与技术、油气井工程流-固耦合数值模拟技术研究工作。E-mail:wanggui@swpu.edu.cn

  • 中图分类号: TE254

Settling Behavior and Drag Coefficient Model of Rock Cuttings of Varied Shapes

  • 摘要: 油气钻井中,岩屑颗粒在井筒中自由沉降会引起沉砂卡钻等问题。为了探究岩屑颗粒沉降规律,开展了模拟岩屑颗粒自由沉降实验。利用沉降实验数据和图像处理技术,计算出10种不同形状颗粒在9种非牛顿流体中的沉降末速度与曳力系数,研究了颗粒形状和流变性对沉降的影响规律,并探究了现有曳力系数模型对非球形颗粒在非牛顿流体中的适用性。结果表明,颗粒偏离球形程度越大,在流体中越难沉降。流体黏度增加可有效抑制沉降的发生,且流体非牛顿性越强,对沉降的抑制作用越明显。现有曳力系数模型不适合描述非牛顿流体中非球形颗粒沉降规律,因此,构建了一种新的形状因子,并结合该形状因子建立了新的曳力系数模型。误差分析结果显示,新模型对沉降实验测量数据具有良好的拟合性,决定系数R2大于0.99。较现有模型预测精度提高了50.5%,预测真实岩屑颗粒曳力系数的误差在15%以内,可较好地描述不同形状岩屑颗粒的沉降曳力系数规律,对提高钻井过程中颗粒流体稳定性具有重要理论和现实意义。

     

  • 图  1  不同实验溶液的流变曲线

    图  2  3D打印树脂颗粒实物图

    图  3  不同溶液实测曳力系数与有效黏度的变化关系

    图  4  不同形状颗粒的沉降末速度

    图  5  不同形状颗粒的雷诺数与实测曳力系数变化关系

    图  6  实测曳力系数与不同模型预测的曳力系数对比

    图  7  新模型下岩屑曳力系数预测值与实测值对比

    表  1  实验溶液组分和密度

    溶液ρ/(kg·m−3)溶液ρ/(kg·m−3)
    清水998.70.08%GUAR1026
    0.4%CMC1025.00.12%GUAR1027
    0.6%CMC1026.00.2%PAM1025
    0.8%CMC1027.00.4%PAM1026
    0.04%GUAR1025.00.6%PAM1027
    下载: 导出CSV

    表  2  实验流体流变参数

    溶液nK/(Pa·sn)溶液nK/(Pa·sn)
    清水1.0000.001 080.08%GUAR0.6460.025 37
    0.40%CMC0.6220.254 000.12%GUAR0.7110.023 44
    0.60%CMC0.5510.734 700.20%PAM0.5570.032 75
    0.80%CMC0.4991.654 000.40%PAM0.5230.051 04
    0.04%GUAR0.6290.025 090.60%PAM0.5420.052 55
    下载: 导出CSV

    表  3  不同形状颗粒形状因子计算结果

    颗粒形状投影面最长轴长度/m投影面中间轴长度/m投影面最短轴长度/m球形度$\varPhi $扁平度Fc新的形状因子${\varPhi _F}$
    球状0.01120.01120.01121.0001.0001.000
    椭球状10.01050.01050.01050.9931.0000.996
    椭球状20.01000.01000.01000.9721.0000.986
    椭球状30.00970.00970.00970.9711.0000.985
    八面体状0.01640.01640.01640.8541.0000.924
    类盘状10.02000.01000.00500.8030.3540.533
    类盘状20.02500.00800.00500.7890.3540.528
    类盘状30.05000.00400.00500.7840.3540.526
    类圆柱状10.01280.01000.00400.6390.3540.476
    类圆柱状20.01660.00300.00250.6340.3540.474
    圆柱状0.02000.02000.00100.4710.0500.153
    盘状0.01000.01000.00100.4710.1000.217
    下载: 导出CSV

    表  4  新的形状因子进行多元非线性拟合结果

    abcdeR2
    15.60.7630.26759040.0460.993
    下载: 导出CSV

    表  5  曳力系数模型预测误差结果

    经验模型预测误差
    rs1s2
    Haider模型52.41%41.445.52
    Ganser模型46.72%33.183.068
    新的曳力系数模型22.10%6.551.59
    下载: 导出CSV
  • [1] X ZHU, Y H ZENG. Settling velocity of non-spherical hydrochorous seeds[J]. Advances in Water Resources, 2017(8):99-107.
    [2] 朱坤娥,秦树辰,郑朝振,等. 浸出矿浆固液分离过程中颗粒的沉降行为研究[J]. 有色金属(冶炼部分),2019(11):7-11.

    ZHU Kun’e, QIN Shuchen, ZHENG Chaozhen, et al. Study on particle settlement behavior of leachate slurry during solid-liquid separation[J]. Non-ferrous Metals (Smelting Section), 2019(11):7-11.
    [3] 马林虎. 钻斜井中防止岩屑沉积的研究[J]. 钻采工艺,1992,15(1):4-7.

    MA Linhu. Research on preventing cuttings deposition in inclined well drilling[J]. Drilling & Production Technology, 1992,15(1):4-7.
    [4] 刘建坤,吴峙颖,吴春方,等. 压裂液悬砂及支撑剂沉降机理实验研究[J]. 钻井液与完井液,2019,36(3):378-383. doi: 10.3969/j.issn.1001-5620.2019.03.020

    LIU Jiankun, WU Zhiying, WU Chunfang, et al. Experiment study on the mechanisms of sand suspension and settling of proppant in fracturing fluids[J]. Drilling Fluid & Completion Fluid, 2019, 36(3):378-383. doi: 10.3969/j.issn.1001-5620.2019.03.020
    [5] 潘谊党,于培志,马京缘. 高密度钻井液加重材料沉降问题研究进展[J]. 钻井液与完井液,2019,36(1):1-9.

    PAN Yidang, YU Peizhi, MA Jingyuan. Review on settlement problem of drilling fluid weighting materials[J]. Drilling Fluid & Completion Fluid, 2019, 36(1):1-9.
    [6] 霍洪俊,王瑞和,倪红坚,等. 超临界二氧化碳在水平井钻井中的携岩规律研究[J]. 石油钻探技术,2014,42(2):12-17.

    HUO Hongjun, WANG Ruihe ,NI Hongjian, et al. Cuttings carrying pattern of supercritical carbon dioxide in horizontal wells[J]. Petroleum Drilling Techniques, 2014, 42(2):12-17.
    [7] 李莅临, 杨进, 路保平, 等. 深水水合物试采过程中地层沉降及井口稳定性研究[J]. 石油钻探技术, 2020, 48(5): 61-68.

    LI Lilin, YANG Jin, LU Baoping, et al. Research on stratum settlement and wellhead stability in deep water during hydrate production testing[J]. Petroleum Drilling Techniques, 2020, 48(5): 61-68.
    [8] STOKES G G. On the effect of the internal friction of fluids on the motion of pendulums[J]. Mathematical and Physical Papers, 1851, 3:1-10.
    [9] RUBEY W W. Settling velocity of gravel, sand, and silt particles[J]. American Journal of Science, 1933(148):325-338.
    [10] HAIDER A, LEVENSPIEL O. Drag coefficient and terminal velocity of nonspherical particles[J]. Powder Technology, 1989(1):63-70.
    [11] GANSER G H. A rational approach to drag prediction of spherical and nonspherical particles[J]. Powder Technology, 1993(2):143-152.
    [12] CAMENEN B B R D. Simple and general formula for the settling velocity of particles[J]. Journal of Hydraulic Engineering, 2007(2):229-233.
    [13] 孙晓峰,纪国栋,冯松林,等. 幂律流体中岩屑颗粒沉降速度实验[J]. 断块油气田,2016(1):120-124. doi: 10.6056/dkyqt201601027

    SUN Xiaofeng, JI Guodong, FENG Songlin, et al. Experimental study on the sedimentation velocity of cuttings in power law fluid[J]. Fault-Block Oil & Gas Field, 2016(1):120-124. doi: 10.6056/dkyqt201601027
    [14] 范茏,杨超,禹耕之,等. 大长径比细长颗粒的沉降实验和曳力系的关联[J]. 化工学报,2003(10):1501-1503. doi: 10.3321/j.issn:0438-1157.2003.10.009

    FAN Long, YANG Chao, YU Geng, et al. Experimental study on the settlement of slender particles with large aspect ratio and its correlation with drag system[J]. Journal of Chemical Engineering, 2003(10):1501-1503. doi: 10.3321/j.issn:0438-1157.2003.10.009
    [15] CHHABRA R P. Motion of spheres in power law (viscoinelastic) fluids at intermediate Reynolds numbers: a unified approach[J]. Chemical Engineering and Processing, 1990(2):89-94.
    [16] COREY A T. Influence of shape on the fall velocity of sand grains[D]. Colorado State University, 2019.
    [17] BAGHERI G H G B, BONADONNA C, MANZELLA I, et al. On the characterization of size and shape of irregular particles[J]. Powder Technology, 2015(12):141-153.
    [18] XIANZHI S , ZHENGMING X. A new model for predicting drag coefficient and settling velocity of spherical and non-spherical particle in Newtonian fluid[J]. Powder Technology, 2017(321):242-250.
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  591
  • HTML全文浏览量:  238
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-08
  • 修回日期:  2022-07-19
  • 刊出日期:  2022-11-30

目录

    /

    返回文章
    返回