留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Alferd修正模型的高密度钻井液性能调控

王帝 邱正松 苗海龙 耿铁 钟汉毅 赵欣 范立君

王帝,邱正松,苗海龙,等. 基于Alferd修正模型的高密度钻井液性能调控[J]. 钻井液与完井液,2022,39(6):692-699 doi: 10.12358/j.issn.1001-5620.2022.06.005
引用本文: 王帝,邱正松,苗海龙,等. 基于Alferd修正模型的高密度钻井液性能调控[J]. 钻井液与完井液,2022,39(6):692-699 doi: 10.12358/j.issn.1001-5620.2022.06.005
WANG Di, QIU Zhengsong, MIAO Hailong, et al.Study on property control of high density drilling fluids based on modified alferd model[J]. Drilling Fluid & Completion Fluid,2022, 39(6):692-699 doi: 10.12358/j.issn.1001-5620.2022.06.005
Citation: WANG Di, QIU Zhengsong, MIAO Hailong, et al.Study on property control of high density drilling fluids based on modified alferd model[J]. Drilling Fluid & Completion Fluid,2022, 39(6):692-699 doi: 10.12358/j.issn.1001-5620.2022.06.005

基于Alferd修正模型的高密度钻井液性能调控

doi: 10.12358/j.issn.1001-5620.2022.06.005
基金项目: 国家自然科学基金项目“裂缝地层致密承压封堵机理与温敏智能堵漏新方法研究”、“基于亚临界水热反应的超高温水基钻井液滤失造壁性调控方法”( 51974354,52174013)、国家重点研发计划“井筒稳定性闭环响应机制与智能调控方法”(2019YFA0708303)资助
详细信息
    作者简介:

    王帝,在读博士研究生,现在主要从事钻井液技术研究。电话 13061359957;E-mail:674472705@qq.com

    通讯作者:

    邱正松,教授,博士生导师。E-mail:qiuzs63@sina.com

  • 中图分类号: TE254.1

Study on Property Control of High Density Drilling Fluids Based on Modified Alferd Model

  • 摘要: 针对深井高温高密度钻井液性能难以调控的问题,探讨了重晶石级配对高密度钻井液流变性和滤失性能的影响规律及作用机理。基于分形理论,对粉体堆积常用的Alfred方程进行修正,建立了适用于重晶石级配加重的粒度分布模型,计算了重晶石级配的理论最优配比,并通过实验验证了修正模型的可行性。实验表明,修正后的Alferd模型可以指导高密度钻井液的颗粒级配设计,确定加重材料最优级配比例。使用合理级配的重晶石加重,可以降低钻井液内部颗粒间的碰撞概率及储能模量,削弱体系的网架结构和流动阻力,并使重晶石的粒度分布更加合理,有利于形成致密泥饼,从而改善钻井液的流变性能和滤失性能。

     

  • 图  1  不同目数重晶石的级配曲线及线性拟合

    图  2  200目与1250目重晶石级配 加重对实验浆滤失性能的影响

    图  3  200目与3000目重晶石级配 加重对实验浆滤失性能的影响

    图  4  不同重晶石加重实验浆的振幅扫描曲线

    图  5  不同目数重晶石级配加重实验浆的滤饼渗透率

    图  6  不同重晶石级配加重实验浆的 滤饼剖面微观形貌(2000倍)

    图  7  不同密度实验浆的重晶石比表面积

    图  8  不同粒径重晶石级配实验浆的比表面积

    表  1  不同粒径重晶石的粒度分布

    粒径/目D10/μmD50/μmD90/μm
    2001.88111.53039.500
    12501.6623.87918.420
    30000.3651.5934.413
    下载: 导出CSV

    表  2  200目与1250目重晶石级配 加重对实验浆流变性的影响

    200目重晶石/
    %
    老化条件
    (180 ℃/16 h)
    AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    Gel/
    Pa/Pa
    100老化前80.06218.03.5/8.5
    老化后70.0646.02.5/6.0
    80老化前77.06116.05.0/8.5
    老化后87.0607.02.7/6.5
    70老化前74.5668.54.0/8.0
    老化后65.0596.02.7/6.0
    50老化前68.55810.54.0/10.0
    老化后58.0526.02.7/5.0
    30老化前72.06012.04.0/8.0
    老化后59.5536.52.5/5.0
    20老化前76.06214.06.0/8.5
    老化后56.5524.52.5/4.5
    0老化前84.06816.08.0/12.5
    老化后63.5603.54.5/8.0
      注:流变性能测试温度为49 ℃;中压和高温高压滤失量测试条件分别为室温、0.7 MPa和150 ℃、3.5 MPa
    下载: 导出CSV

    表  3  200目与3000目重晶石级配 加重对实验浆流变性的影响

    200目重晶石/
    %
    老化条件
    (180℃/16h)
    AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    Gel/
    Pa/Pa
    100老化前80.06218.03.5/8.5
    老化后70.0646.02.5/6.0
    80老化前64.05212.04.0/8.0
    老化后50.0446.02.5/4.5
    70老化前60.04911.04.0/8.0
    老化后49.0427.05.5/9.5
    50老化前61.54912.53.5/7.0
    老化后49.5409.53.5/7.0
    30老化前76.06214.06.0/8.5
    老化后65.55212.02.5/4.5
    20老化前93.06330.016.0/25.5
    老化后65.54817.511.5/23.5
      注:当3000目加量为100%时,黏度过高无法测量;流变性能测试温度为49 ℃;中压和高温高压滤失量测试条件分别为室温、0.7 MPa和150 ℃、3.5 MPa
    下载: 导出CSV
  • [1] 邱正松,赵冲,张现斌,等. 超高温高密度油基钻井液研究与性能评价[J]. 钻井液与完井液,2021,38(6):663-670.

    QIU Zhengsong, ZHAO Chong, ZHANG Xianbin, et al. Research and performance evaluation of ultra-high temperature and high density oil-based drilling fluid[J]. Drilling Fluid & Completion Fluid, 2021, 38(6):663-670.
    [2] STAMATAKIS E, YOUNG S, STEFANO G D. Meeting the ultra HTHP fluids challenge [C]. Society of Petroleum Engineers, 2012.
    [3] 李雄,董晓强,金军斌,等. 超高温高密度钻井液体系的研究与应用[J]. 钻井液与完井液,2020,37(6):694-700. doi: 10.3969/j.issn.1001-5620.2020.06.003

    LI Xiong, DONG Xiaoqiang, JIN Junbin, et al. Research and application of ultra-high temperature and high density drilling fluid system[J]. Drilling Fluid & Completion Fluid, 2020, 37(6):694-700. doi: 10.3969/j.issn.1001-5620.2020.06.003
    [4] 蔡勇,郭保雨,何兴华,等. 新型高密度钻井液加重剂的性能评价及应用[J]. 钻采工艺,2020,43(1):106-109. doi: 10.3969/J.ISSN.1006-768X.2020.01.30

    CAI Yong, GUO Baoyu, HE Xinghua, et al. Performance evaluation and application of new high density drilling fluid weighting agent[J]. Drilling and Production Technology, 2020, 43(1):106-109. doi: 10.3969/J.ISSN.1006-768X.2020.01.30
    [5] 李炎军,马二龙,张万栋,等. 莺琼盆地高温高密度水基钻井液流变性调控方法[J]. 科学技术与工程,2020,20(26):10740-10744. doi: 10.3969/j.issn.1671-1815.2020.26.027

    LI Yanjun, MA Erlong, ZHANG Wandong, et al. Rheological control method of high temperature and high density water-based drilling fluid in Yingqiong basin[J]. Science Technology and Engineering, 2020, 20(26):10740-10744. doi: 10.3969/j.issn.1671-1815.2020.26.027
    [6] 夏孝杰. 塔中北坡地区抗高温超高密度钻井液优化实验研究[D]. 中国石油大学(华东) , 2019.

    XIA Xiaojie. Experimental study on optimization of high temperature resistant ultra-high density drilling fluid in the northern slope of Tazhong[D]. China University of Petroleum (East China), 2019
    [7] 潘谊党,于培志,马京缘. 高密度钻井液加重材料沉降问题研究进展[J]. 钻井液与完井液,2019,36(1):1-9. doi: 10.3969/j.issn.1001-5620.2019.01.001

    PAN yidang, YU Peizhi, MA Jingyuan. Research progress on heavy material settlement of high density drilling fluid[J]. Drilling Fluid & Completion Fluid, 2019, 36(1):1-9. doi: 10.3969/j.issn.1001-5620.2019.01.001
    [8] AHMAD H M, KAMAL M S, AL-HARTHI M A. High molecular weight copolymers as rheology modifier and fluid loss additive for water-based drilling fluids[J]. Journal of Molecular Liquids, 2018, 252:133-143. doi: 10.1016/j.molliq.2017.12.135
    [9] KONAKAWA Y, ISHIZAKI K. The particle size distribution for the highest relative density in a compacted body[J]. Powder Technology, 1990, 63(3):241-246. doi: 10.1016/0032-5910(90)80049-5
    [10] BARRY M M, JUNG Y, LEE J K, et al. Fluid filtration and rheological properties of nanoparticle additive and intercalated clay hybrid bentonite drilling fluids[J]. Journal of Petroleum Science & Engineering, 2015, 127:338-346.
    [11] AL-YASIRI M , AWAD A , PERVAIZ S , et al. Influence of silica nanoparticles on the functionality of water-based drilling fluids[J]. Journal of Petroleum Science and Engineering, 2019.
    [12] 黄维安,邱正松,徐加放,等. 重晶石粒度级配对加重钻井液流变性的影响[J]. 钻井液与完井液,2010,27(4):23-25.

    HUANG Wei'an, QIU Zhengsong, XU Jiafang, et al. The effect of barite particle size distribution on the fluidity of heavy drilling fluid[J]. Drilling Fluid & Completion Fluid, 2010, 27(4):23-25.
    [13] 苗海龙,邱正松,李自立,等. 重晶石粉颗粒级配对高密度钻井液性能影响的实验探讨[J]. 当代化工,2021,50(5):1090-1095.

    MIAO Hailong, QIU Zhengsong, LI Zili, et al. Experimental discussion on the influence of barite powder particle size distribution on the performance of high density drilling fluid[J]. Contemporary Chemical Industry, 2021, 50(5):1090-1095.
    [14] FURNAS C C. The relations between specific volume, voids, and size composition in systems of broken solids of mixed sized, department of commerce, bureau of mines[J]. Reports of investigations, 1928:1-10.
    [15] WESTMAN A, HUGILL H R. The packing of particlesl[J]. Journal of the American Ceramic Society, 2010, 13(10):767-779.
    [16] SUZUKI M, OSHIMA T. Co-ordination number of a multi-component randomly packed bed of spheres with size distribution[J]. Powder Technology, 1985, 44(3):213-218. doi: 10.1016/0032-5910(85)85002-6
    [17] DINGER D R, FUNK J E. Particle-packing phenomena and their application in materials processing[J]. MRS Bulletin, 2013, 22(12):19-23.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  666
  • HTML全文浏览量:  274
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-13
  • 修回日期:  2022-05-23
  • 刊出日期:  2022-11-30

目录

    /

    返回文章
    返回