留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自交联型油基钻井液降滤失剂的研制与评价

杨俊 蒋官澄 王国帅 贺垠博 杨丽丽 袁学强

杨俊,蒋官澄,王国帅,等. 自交联型油基钻井液降滤失剂的研制与评价[J]. 钻井液与完井液,2022,39(6):685-691 doi: 10.12358/j.issn.1001-5620.2022.06.004
引用本文: 杨俊,蒋官澄,王国帅,等. 自交联型油基钻井液降滤失剂的研制与评价[J]. 钻井液与完井液,2022,39(6):685-691 doi: 10.12358/j.issn.1001-5620.2022.06.004
YANG Jun, JIANG Guancheng, WANG Guoshuai, et al.Development and evaluation of a self-crosslinking filter loss reducer for oil based drilling fluids[J]. Drilling Fluid & Completion Fluid,2022, 39(6):685-691 doi: 10.12358/j.issn.1001-5620.2022.06.004
Citation: YANG Jun, JIANG Guancheng, WANG Guoshuai, et al.Development and evaluation of a self-crosslinking filter loss reducer for oil based drilling fluids[J]. Drilling Fluid & Completion Fluid,2022, 39(6):685-691 doi: 10.12358/j.issn.1001-5620.2022.06.004

自交联型油基钻井液降滤失剂的研制与评价

doi: 10.12358/j.issn.1001-5620.2022.06.004
基金项目: 国家自然科学基金重大项目“井筒工作液与天然气水合物储层作用机理和调控方法”(51991361)、国家自然科学基金创新研究群体项目(51821092)
详细信息
    作者简介:

    杨俊,1997年生,中国石油大学(北京)油气井工程在读研究生,主要研究方向为钻井液处理剂研发等工作。E-mail:1509216589@qq.com

    通讯作者:

    蒋官澄,1966年生,教授,博士生导师,E-mail:m15600263100_1@163.com

  • 中图分类号: TE254.4

Development and Evaluation of a Self-Crosslinking Filter Loss Reducer for Oil Based Drilling Fluids

  • 摘要: 针对传统油基钻井液降滤失剂耐温性能不足、影响体系流变等问题,基于自交联改性思路,以N-羟甲基丙烯酰胺为功能单体,与丙烯酸丁酯和苯乙烯进行乳液聚合,研制了一种自交联型油基钻井液降滤失剂(BSN)。通过红外光谱仪、激光粒度仪和透射电镜表征了BSN的主要官能团、微观形貌和自交联特征。实验结果表明,BSN含有自交联功能基团羟甲基,平均粒径为247 nm,颗粒间具有明显的交联结构。热重测试结果显示,BSN热稳定性良好,初始分解温度高达355 ℃,显著高于非自交联型的降滤失剂BS(278 ℃)。在油基钻井液体系中添加1%的BSN,不仅不影响体系流变参数而且能够提高破乳电压,180 ℃下的高温高压滤失量仅为4 mL,滤失控制能力明显优于非交联型的降滤失剂BS以及3%的传统油基钻井液降滤失剂有机褐煤和氧化沥青。

     

  • 图  1  油基钻井液降滤失剂的红外光谱图

    图  2  油基钻井液降滤失剂的粒径分布

    图  3  油基钻井液降滤失剂的透射电镜:BS(左)和BSN(右)

    图  4  油基钻井液降滤失剂的热重曲线

    图  5  BSN的合成反应原理

    图  6  BSN分子链间的自交联反应原理

    图  7  不同油基钻井液体系的破乳电压随温度变化的曲线

    图  8  添加不同降滤失剂的油基钻井液体系高温高压滤失量

    注: 高温高压滤失量测试温度与老化温度一致,压差3.5 MPa,滤液收集时间30 min

    表  1  添加不同降滤失剂的油基钻井液体系基本性能对比

    评价配方T老化/
    AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    Gel/
    Pa/Pa
    1#:OBDF+3%有机褐煤常温39.029.010.04.50/4.50
    12040.031.09.04.00/4.50
    15036.530.06.53.00/3.25
    18026.024.51.50/0.50
    2#:OBDF+3%氧化沥青常温43.032.011.04.50/5.00
    12042.032.010.04.00/4.50
    15041.034.07.03.00/3.50
    18031.029.02.00.50/1.00
    3#:OBDF+1%BS常温39.528.011.55.00/5.50
    12044.033.011.05.00/5.00
    15037.029.08.03.25/3.75
    18031.529.02.51.50/2.50
    4#:OBDF+1%BSN常温41.029.012.05.50/7.00
    12045.533.512.05.00/6.00
    15042.031.510.55.00/5.50
    18034.528.06.54.00/5.00
      注: 热滚时间为16 h、温度分别为120 、150 、180 ℃;流变测试温度为50 ℃
    下载: 导出CSV
  • [1] 孙金声,黄贤斌,吕开河,等. 提高水基钻井液高温稳定性的方法、技术现状与研究进展[J]. 中国石油大学学报(自然科学版),2019,43(5):73-81.

    SUN Jinsheng, HUANG Xianbin, LYU Kaihe, et al. Methods, technology status and research progress of improving high temperature stability of water-based drilling fluids[J]. Journal of China University of Petroleum (Natural Science Edition), 2019, 43(5):73-81.
    [2] JIANG G ,SUN J ,HE Y , et al. Novel water-based drilling and completion fluid technology to improve wellbore quality during drilling and protect unconventional reservoirs, Engineering (2021).
    [3] 王中华. 国内外超高温高密度钻井液技术现状与发展趋势[J]. 石油钻探技术,2011,39(2):1-7. doi: 10.3969/j.issn.1001-0890.2011.02.001

    WANG Zhonghua. Present situation and development trend of ultra-high temperature and high-density drilling fluid technology at home and abroad[J]. Petroleum Drilling Technology, 2011, 39(2):1-7. doi: 10.3969/j.issn.1001-0890.2011.02.001
    [4] 周研,蒲晓林. 油基钻井液用降滤失剂研究现状[J]. 化学世界,2020,61(1):7-15.

    ZHOU Yan, PU Xiaolin. Research status of fluid loss control agents for oil-based drilling fluids[J]. Chemistry World, 2020, 61(1):7-15.
    [5] 黄津松,张家旗,王建华,等. 国内油基钻井液研发现状与思考[J]. 化工管理,2020(33):130-133. doi: 10.3969/j.issn.1008-4800.2020.33.064

    HUANG Jinsong, ZHANG Jiaqi, WANG Jianhua, et al. Current situation and thinking of domestic oil-based drilling fluid research and development[J]. Chemical Management, 2020(33):130-133. doi: 10.3969/j.issn.1008-4800.2020.33.064
    [6] 孙金声,赵震,白英睿,等. 智能自愈合凝胶研究进展及在钻井液领域的应用前景[J]. 石油学报,2020,41(12):1706-1718. doi: 10.7623/syxb202012023

    SUN Jinsheng, ZHAO Zhen, BAI Yingrui, et al. Research progress of intelligent self-healing gel and its application prospect in drilling fluid field[J]. Chinese Journal of Petroleum, 2020, 41(12):1706-1718. doi: 10.7623/syxb202012023
    [7] PANAMARATHUPALAYAM B. Crosslinked synthetic polymer-based reservoir drilling fluid: US20170198189 AI [P]. 2017-12-18.
    [8] 苟绍华,封明明,叶仲斌,等. 丙烯酰胺-双丙酮丙烯酰胺自交联聚合物凝胶的研究[J]. 油田化学,2013,30(3):366-370,375.

    GOU Shaohua, FENG Mingming, YE Zhongbin, et al. Study on self-crosslinked polymer gel of acrylamide-diacetone acrylamide[J]. Oilfield Chemistry, 2013, 30(3):366-370,375.
    [9] 吴鹏伟,杜文浩,邹琴,等. 丙烯酰胺基交联聚合物微球的制备及其对钻井液性能的影响[J]. 油田化学,2018,35(4):592-596,602.

    WU Pengwei, DU Wenhao, ZOU Qin, et al. Preparation of acrylamide-based cross-linked polymer microspheres and their effects on drilling fluid properties[J]. Oilfield Chemistry, 2018, 35(4):592-596,602.
    [10] 戎克生,杨彦东,徐生江,等. 抗高温微交联聚合物降滤失剂的制备与性能评价[J]. 油田化学,2018,35(4):582-586,591.

    RONG Kesheng, YANG Yandong, XU Shengjiang, et al. Preparation and performance evaluation of high temperature resistant micro-crosslinked polymer fluid loss reducer[J]. Oilfield Chemistry, 2018, 35(4):582-586,591.
    [11] 冯萍, 邱正松, 曹杰. 交联型油基钻井液降滤失剂的合成及性能评价[J]. 钻井液与完井液, 2012, 29(1): 9-11, 14.

    FENG Ping, QIU Zhengsong, CAO Jie. Synthesis and performance evaluation of cross-linked oil-based drilling fluid fluid loss control agent [J]. Drilling Fluid & Completion Fluid, 2012, 29(1): 9-11 , 14 .
    [12] 黄贤斌,蒋官澄,邓正强. 水性丙烯酸树脂在油包水钻井液中的作用[J]. 钻井液与完井液,2017,34(2):26-32. doi: 10.3969/j.issn.1001-5620.2017.02.005

    HUANG Xianbin, JIANG Guancheng, DENG Zhengqiang. The role of water-based acrylic resin in water-in-oil drilling fluids[J]. Drilling Fluid & Completion Fluid, 2017, 34(2):26-32. doi: 10.3969/j.issn.1001-5620.2017.02.005
    [13] 王国帅,蒋官澄,贺垠博,等. pH刺激响应型抗高温可逆转乳化剂研制与评价[J]. 钻井液与完井液,2021,38(5):552-559.

    WANG Guoshuai, JIANG Guancheng, HE Yinbo, et al. Development and evaluation of pH-stimulated responsive high temperature reversible emulsifier[J]. Drilling Fluid & Completion Fluid, 2021, 38(5):552-559.
    [14] S KRISHNAN, A KLEIN, M S EL-AASSER, et al. Influence of chain transfer agent on the cross-linking of poly (n-butyl methacrylate-co-N-methylol acrylamide) latex particles and films[J]. Macromolecules, 36 (2003) : 3511–3518.
    [15] 蒋官澄,毛蕴才,周宝义,等. 暂堵型保护油气层钻井液技术研究进展与发展趋势[J]. 钻井液与完井液,2018,35(2):1-16. doi: 10.3969/j.issn.1001-5620.2018.02.001

    JIANG Guancheng, MAO Yuncai, ZHOU Baoyi, et al. Research progress and development trend of drilling fluid technology for temporary plugging protection of oil and gas layers[J]. Drilling Fluid & Completion Fluid, 2018, 35(2):1-16. doi: 10.3969/j.issn.1001-5620.2018.02.001
    [16] 张金波,鄢捷年. 钻井液中暂堵剂颗粒尺寸分布优选的新理论和新方法[J]. 石油学报,2004(6):88-91,95. doi: 10.3321/j.issn:0253-2697.2004.06.018

    ZHANG Jinbo, YAN Jienian. New theory and new method for optimization of particle size distribution of temporary plugging agent in drilling fluid[J]. Acta PetroChina, 2004(6):88-91,95. doi: 10.3321/j.issn:0253-2697.2004.06.018
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  699
  • HTML全文浏览量:  271
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-05
  • 修回日期:  2022-09-20
  • 刊出日期:  2022-11-30

目录

    /

    返回文章
    返回