留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

适合海上某气田高温高压低渗储层的修井液体系

梁玉凯 罗刚 周玉霞 宋吉锋 郑华安 任坤峰 林科雄

梁玉凯,罗刚,周玉霞,等. 适合海上某气田高温高压低渗储层的修井液体系[J]. 钻井液与完井液,2022,39(5):654-660 doi: 10.12358/j.issn.1001-5620.2022.05.018
引用本文: 梁玉凯,罗刚,周玉霞,等. 适合海上某气田高温高压低渗储层的修井液体系[J]. 钻井液与完井液,2022,39(5):654-660 doi: 10.12358/j.issn.1001-5620.2022.05.018
LIANG Yukai, LUO Gang, ZHOU Yuxia, et al.Study on workover fluid suitable for high temperature, high pressure and low permeability reservoirs in offshore gas field [J]. Drilling Fluid & Completion Fluid,2022, 39(5):654-660 doi: 10.12358/j.issn.1001-5620.2022.05.018
Citation: LIANG Yukai, LUO Gang, ZHOU Yuxia, et al.Study on workover fluid suitable for high temperature, high pressure and low permeability reservoirs in offshore gas field [J]. Drilling Fluid & Completion Fluid,2022, 39(5):654-660 doi: 10.12358/j.issn.1001-5620.2022.05.018

适合海上某气田高温高压低渗储层的修井液体系

doi: 10.12358/j.issn.1001-5620.2022.05.018
基金项目: 中海石油(中国)有限公司南海西部高温高压气藏勘探开发技术及勘探新领域研究(CNOOC-KJ 135 ZDXM 38 ZJ 02 ZJ)
详细信息
    作者简介:

    梁玉凯,1981年生, 毕业于 中国石油大学(华东)油气田开发专业,现在从事采油工艺技术研究与应用工作

    通讯作者:

    罗刚,工程师,1977年生,现在主要从事油气井井筒工作液技术研究工作。E-mail: luogang8658@163.com

  • 中图分类号: TE358

Study on Workover Fluid Suitable for High Temperature, High Pressure and Low Permeability Reservoirs in Offshore Gas Field

  • 摘要: 针对海上某高温高压低渗气田修井作业过程中修井液易对储层造成污染伤害以及对井下管柱易产生严重腐蚀等问题,室内以可溶性复合盐加重材料HGBZ为基础,并结合抗高温缓蚀剂HSJ-S、耐温抗盐防水剂HAD-2以及抗高温键合剂HJH-2等主要处理剂,研制了一套适合海上高温高压低渗气田的双保型高温高密度修井液体系,并对其综合性能进行了评价。结果表明:该修井液体系的基本性能良好,密度在1.03~1.80 g/cm3之间可调;修井液具有较好的防腐蚀效果,对井下设备钢材的腐蚀速率低于0.076 mm/a;修井液对目标气田储层段黏土矿物的防膨效果较好,防膨率可以达到95%以上;修井液与储层段地层水具有较好的配伍性,不会产生结晶沉淀等;修井液体系可以有效降低天然岩心的自吸水量,并且经过修井液污染后的天然岩心在长时间高温条件下的渗透率恢复值可以达到90%以上,具有良好的储层保护效果。X井使用双保型高温高密度修井液体系修井过程顺利,未发生井下复杂事故,修井后产能恢复率较高,说明研究的双保型高温高密度修井液体系能够满足海上高温高压低渗气田的修井作业要求。

     

  • 图  1  不同类型防水锁剂性能评价结果

    图  2  键合剂HJH-2加量对CST值的影响

    图  3  修井液体系的腐蚀性能

    图  4  修井液体系的防膨性能

    图  5  岩心自吸水实验结果

    表  1  抗高温缓蚀剂HSJ-S加量优选

    钢片
    编号
    HSJ-S/
    %
    m1/
    g
    m2/
    g
    m/
    g
    腐蚀速率/
    mm·a−1
    8014 0 7.9751 7.1452 0.8299 4.256
    8015 0.5 7.6182 7.4531 0.1651 0.847
    8016 1.0 7.6053 7.5961 0.0092 0.047
    8017 1.5 7.5868 7.5802 0.0066 0.035
    8018 2.0 7.5907 7.5884 0.0023 0.012
    下载: 导出CSV

    表  2  修井液体系与地层水的配伍性

    测定条件 修井液与地层水不同比例混合后的浊度值/NTU
    9∶1 7∶3 5∶5 3∶7 1∶9
    加热前 2.7 2.4 2.5 1.9 1.7
    加热后 3.8 4.6 3.5 2.7 3.1
    下载: 导出CSV

    表  3  修井液体系储层保护性能评价结果

    岩心号 K0/mD Kd/mD (K0/Kd)/%
    256 1.03 0.86 83.49
    248 0.98 0.84 85.71
    367 2.99 2.76 92.31
    下载: 导出CSV
  • [1] 任松涛,魏安超,韩成,等. 莺歌海盆地东方高温高压气田水平井完井关键技术[J]. 新疆石油天然气,2020,16(4):37-40. doi: 10.3969/j.issn.1673-2677.2020.04.009

    REN Songtao, WEI Anchao, HAN Cheng, et al. Key technology of horizontal wells completion in Dongfang high temperature and pressure gas field in Yinggehai basin[J]. Xinjiang Oil & Gas, 2020, 16(4):37-40. doi: 10.3969/j.issn.1673-2677.2020.04.009
    [2] 谢仁军,吴怡,袁俊亮,等. 南海超高温高压气田开发钻完井技术可行性评估与关键技术研究[J]. 中国海上油气,2021,33(5):122-129.

    XIE Renjun, WU Yi, YUAN Junliang, et al. Technical feasibility evaluation and key technologies study of drilling and completion for development of UHTHP gas fields in South China Sea[J]. China Offshore Oil and Gas, 2021, 33(5):122-129.
    [3] 吴倩,杨朝强,陈之贺,等. 莺歌海盆地东方A-1和A-2气田黄流组储层差异性分析[J]. 地质科技情报,2018,37(3):185-190. doi: 10.19509/j.cnki.dzkq.2018.0324

    WU Qian, YANG Chaoqiang, CHEN Zhihe, et al. Reservoir differences of the Huangliu formation in Dongfang A-1 and A-2 gas fields, Yinggehai basin[J]. Geological Science and Technology Information, 2018, 37(3):185-190. doi: 10.19509/j.cnki.dzkq.2018.0324
    [4] 姜平,雷霄,王雯娟,等. 南海西部海域油气田开发技术进展及发展方向[J]. 中国海上油气,2021,33(1):85-92.

    JIANG Ping, LEI Xiao, WANG Wenjuan, et al. Progress and future development direction of oil and gas development technologies for western South China Sea oilfields[J]. China Offshore Oil and Gas, 2021, 33(1):85-92.
    [5] 杨玉豪,张万栋,韩成,等. 南海高温高压气田尾管回接管柱改进及入井质量控制[J]. 断块油气田,2020,27(2):253-257.

    YANG Yuhao, ZHANG Wandong, HAN Cheng, et al. Running quality control and structure improvement of liner tie-back string of HTHP gasfield in South China Sea[J]. Fault-Block Oil & Gas Field, 2020, 27(2):253-257.
    [6] 李中. 南海高温高压气田开发钻完井关键技术现状及展望[J]. 石油钻采工艺,2016,38(6):730-736. doi: 10.13639/j.odpt.2016.06.003

    LI Zhong. Status and prospect of key drilling and completion technologies for the development of HTHP gasfield in South China Sea[J]. Oil Drilling & Production Technology, 2016, 38(6):730-736. doi: 10.13639/j.odpt.2016.06.003
    [7] 董星亮. 南海西部高温高压井测试技术现状及展望[J]. 石油钻采工艺,2016,38(6):723-729,736.

    DONG Xingliang. Status and prospect of testing technologies for HTHP wells in western South China Sea[J]. Oil Drilling & Production Technology, 2016, 38(6):723-729,736.
    [8] 李中,刘书杰,李炎军,等. 南海高温高压钻完井关键技术及工程实践[J]. 中国海上油气,2017,29(6):100-107.

    LI Zhong, LIU Shujie, LI Yanjun, et al. Key technology and practice of HTHP well drilling and completion in South China Sea[J]. China Offshore Oil and Gas, 2017, 29(6):100-107.
    [9] 黄熠. 南海高温高压勘探钻井技术现状及展望[J]. 石油钻采工艺,2016,38(6):737-745.

    HUANG Yi. Drilling technology for HTHP exploration in South China Sea and its prospect[J]. Oil Drilling & Production Technology, 2016, 38(6):737-745.
    [10] 罗鸣,吴江,陈浩东,等. 南海西部窄安全密度窗口超高温高压钻井技术[J]. 石油钻探技术,2019,47(1):8-12. doi: 10.11911/syztjs.2019024

    LUO Ming, WU Jiang, CHEN Haodong, et al. Ultra-high temperature high pressure drilling technology for narrow safety density window strata in the western South China[J]. Petroleum Drilling Techniques, 2019, 47(1):8-12. doi: 10.11911/syztjs.2019024
    [11] 黄亮,魏安超,王尔钧,等. 莺歌海盆地高温高压气田完井技术[J]. 石油钻探技术,2019,47(6):21-26. doi: 10.11911/syztjs.2019098

    HUANG Liang, WEI Anchao, WANG Erjun, et al. Completion technologies for HTHP gas fields in the Yinggehai basin[J]. Petroleum Drilling Techniques, 2019, 47(6):21-26. doi: 10.11911/syztjs.2019098
    [12] 李炎军,吴江,黄熠,等. 莺歌海盆地中深层高温高压钻井关键技术及其实践效果[J]. 中国海上油气,2015,27(4):102-106. doi: 10.11935/j.issn.1673-1506.2015.04.014

    LI Yanjun, WU Jiang, HUANG Yi, et al. Key technology and application of HTHP drilling in mid-deep formations in Yinggehai basin[J]. China Offshore Oil and Gas, 2015, 27(4):102-106. doi: 10.11935/j.issn.1673-1506.2015.04.014
    [13] 雷霄,王雯娟,鲁瑞彬,等. 莺琼盆地高温高压砂岩气藏储层应力敏感性实验[J]. 科学技术与工程,2020,20(26):10745-10750. doi: 10.3969/j.issn.1671-1815.2020.26.028

    LEI Xiao, WANG Wenjuan, LU Ruibin, et al. Experimental study on stress sensitivity of high temperature and high pressure sandstone gas reservoirs in Yingqiong basin[J].Science Technology and Engineering, 2020, 20(26):10745-10750. doi: 10.3969/j.issn.1671-1815.2020.26.028
    [14] 邱悦. 高温高压气藏储层伤害实验及机理研究[D]. 成都: 西南石油大学, 2019.

    QIU Yue. Experimental study and mechanism of reservoir damage in high temperature and high pressure gas reservoirs[D]. Chengdu: Southwest Petroleum University, 2019.
    [15] 姚茂堂,袁学芳,黄龙藏,等. 高温高压裂缝性致密砂岩气藏水锁伤害及解除[J]. 石油与天然气化工,2021,50(4):96-99. doi: 10.3969/j.issn.1007-3426.2021.04.015

    YAO Maotang, YUAN Xuefang, HUANG Longcang, et al. Study on water lock damage and release of high temperature and high pressure fractured tight sandstone gas reservoir[J]. Chemical engineering of oil & gas, 2021, 50(4):96-99. doi: 10.3969/j.issn.1007-3426.2021.04.015
    [16] 任生军. 酸性气田超深井修井工艺技术研究[D]. 成都: 西南石油大学, 2016.

    REN Shengjun. Study on ultra deep well workover technology in acid gas field[D]. Chengdu: Southwest Petroleum University, 2016.
    [17] 程利民,宋吉锋,梁玉凯,等. 南海西部高温低压气田修井储层保护技术研究及应用[J]. 承德石油高等专科学校学报,2019,21(5):20-23. doi: 10.3969/j.issn.1008-9446.2019.05.006

    CHENG Limin, SONG Jifeng, LIANG Yukai, et al. Research and application of workover reservoir protection technology in high temperature and low pressure gas fields in western South China Sea[J]. Journal of Chengde Petroleum College, 2019, 21(5):20-23. doi: 10.3969/j.issn.1008-9446.2019.05.006
    [18] 冯广庆,谢宇. 高温高压油气井井下作业技术在迪那2气田的应用[J]. 油气井测试,2007(4):39-41. doi: 10.3969/j.issn.1004-4388.2007.04.015

    FENG Guangqing, XIE Yu. Application of dowehole operation technology for hthp oil & gas well in Dina2 gas field[J]. Well Testing, 2007(4):39-41. doi: 10.3969/j.issn.1004-4388.2007.04.015
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  428
  • HTML全文浏览量:  217
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-06
  • 修回日期:  2022-04-27
  • 录用日期:  2022-05-12
  • 刊出日期:  2023-01-10

目录

    /

    返回文章
    返回