留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米变黏滑溜水黏弹携砂机理与渗吸性能

刘汉斌 柏浩 唐梅荣 吕宝强 韩创辉 王文中 周福建 姚二冬

刘汉斌,柏浩,唐梅荣,等. 纳米变黏滑溜水黏弹携砂机理与渗吸性能[J]. 钻井液与完井液,2022,39(5):638-645 doi: 10.12358/j.issn.1001-5620.2022.05.016
引用本文: 刘汉斌,柏浩,唐梅荣,等. 纳米变黏滑溜水黏弹携砂机理与渗吸性能[J]. 钻井液与完井液,2022,39(5):638-645 doi: 10.12358/j.issn.1001-5620.2022.05.016
LIU Hanbin, BAI Hao, TANG Meirong, et al.Study on viscoelastic sand-carrying mechanism and imbibition performance of nano variable-viscosity slickwater[J]. Drilling Fluid & Completion Fluid,2022, 39(5):638-645 doi: 10.12358/j.issn.1001-5620.2022.05.016
Citation: LIU Hanbin, BAI Hao, TANG Meirong, et al.Study on viscoelastic sand-carrying mechanism and imbibition performance of nano variable-viscosity slickwater[J]. Drilling Fluid & Completion Fluid,2022, 39(5):638-645 doi: 10.12358/j.issn.1001-5620.2022.05.016

纳米变黏滑溜水黏弹携砂机理与渗吸性能

doi: 10.12358/j.issn.1001-5620.2022.05.016
基金项目: 国家自然科学基金“纳米乳液在致密砂岩储层中的吸附特性及其解水锁机制研究”(52004306),中国石油天然气集团有限公司-中国石油大学(北京)战略合作科技专项“鄂尔多斯盆地致密油-页岩油富集、高效开发理论与关键技术研究”(ZLZX2020-02)。
详细信息
    作者简介:

    刘汉斌,高级工程师,现在从油气田开发技术研究工作。E-mail:lhb_cq@petrochina.com.cn

    通讯作者:

    姚二冬,E-mail:yaoed@cup.edu.cn

  • 中图分类号: TE357

Study on Viscoelastic Sand-carrying Mechanism and Imbibition Performance of Nano Variable-viscosity Slickwater

  • 摘要: 纳米变黏滑溜水作为一种具有良好携砂性能和渗吸置换作用的新型压裂液体系,已成功应用于长庆油田页岩油体积压裂施工,现场试验结果表明其具有良好的携砂性能以及增产效果,40 %砂比条件下加砂过程压力平稳,压裂施工完成后单井日产油量可达11.31 t,但其携砂机理与渗吸性能尚不明确。因此对现场使用浓度的纳米变黏滑溜水与常规EM30S可交联滑溜水体系进行室内实验研究,通过动态携砂运移、透射电镜(TEM)、流变性能评价以及储层温压条件下的带压渗吸等实验方法,揭示了纳米变黏滑溜水的携砂机理并评价了其渗吸性能。实验结果表明,滑溜水弹性模量与黏性模量的交点值反映了滑溜水溶液的携砂性能,交点值越小,其弹性携砂性能越强;相同黏度下的纳米变黏滑溜水CNI体系黏弹模量交点值仅为0.0741 Hz,远低于现场用滑溜水EM30S的0.181 Hz,致使其静态和动态弹性携砂性能远高于EM30S;电镜结果表明纳米乳液与变黏滑溜水存在强化缔合结构是滑溜水的弹性携砂性能增强的主要原因。此外,带压渗吸实验结果显示,纳米变黏滑溜水具有良好的渗吸置换性能,能够置换出页岩纳米孔隙中的原油,整体采收率可达36 %;其中,不同孔隙类型的采收率排序依次为:介孔>微孔>宏孔。

     

  • 图  1  珠X井纳米变黏滑溜水现场施工曲线

    图  2  可视化裂缝模型动态携砂装置

    图  3  不同砂比/排量/黏度的2种滑溜水携砂情况对比

    图  4  CNI体系3种参数下砂堤平衡高度对比(归一化处理)

    图  5  不同情况下3种参数各自的影响比值

    图  6  两种滑溜水黏弹模量对比

    图  7  加与不加纳米乳液的变黏滑溜水电镜图

    图  8  长庆岩心T2测试曲线

    图  9  岩心采收率随时间变化图

    图  10  不同孔隙类型采收率对比

    表  1  两种滑溜水的模量和沉降时间、平衡高度比较(1 Hz对应,20 L/min排量、40%砂比)

    滑溜水及其浓度 交点/ Hz G’/ Pa 沉降时
    间/s
    砂堤平衡
    高度/ cm
    0.10% CNI-A+
    0.10% CNI-B
    0.0800 0.284 57.18 23
    0.10% CNI-A+
    0.30% CNI-B
    0.0741 0.4628 223.10 15
    0.10% CNI-A+
    0.60% CNI-B
    0.0100 3.444 1041.06 8
    下载: 导出CSV

    表  2  岩心物性参数

    岩心编号 长度/
    cm
    直径/
    cm
    孔隙度/
    %
    渗透率/
    mD
    1 5.030 2.54 8.3356 0.030 8
    2 5.010 2.52 8.3212 0.030 3
    下载: 导出CSV

    表  3  核磁扫描横向弛豫时间与孔隙半径转换

    T2/ms R/nm 孔隙类型
    0.01≤T2≤0.1 R<2 微孔
    0.1<T2≤2.5 2<R≤50 介孔
    T2>2.5 R>50 宏孔
    下载: 导出CSV
  • [1] 张锋三,沈一丁,王磊,等. 聚丙烯酰胺压裂液减阻剂的合成及性能[J]. 精细化工,2016(35):1422-1427.

    ZHANG Fengsan, SHEN Yiding, WANG Lei, et al. Synthesis and properties of polyacrylamide fracturing fluid drag reducer[J]. Fine Chemical Industry, 2016(35):1422-1427.
    [2] 姜在兴,张文昭,梁超,等. 页岩油储层基本特征及评价要素[J]. 石油学报,2014,35(1).

    JIANG Zaixing, ZHANG Wenzhao, LIANG Chao, et al. Basic characteristics and evaluation elements of shale oil reservoir[J]. Journal of Petroleum, 2014, 35(1).
    [3] SCANLON B R, et al. Comparison of water use for hydraulic fracturing for unconventional oil and gas versus conventional oil[J]. Environmental Science & Technology, 2014.
    [4] GUO J, YANG L, WANG S. Adsorption damage and control measures of slick-water fracturing fluid in shale reservoirs[J]. Petroleum Exploration and Development, 2018, 45(2):148-154.
    [5] 杜凯,黄凤兴,伊卓,等. 页岩气滑溜水压裂用降阻剂研究与应用进展[J]. 中国科学:化学,2014,44(11):1696-1704.

    DU Kai, HUANG Fengxing, YI Zhuo, et al. Research and application progress of resistance reducer for shale gas slick water fracturing[J]. Chinese Science:Chemistry, 2014, 44(11):1696-1704.
    [6] 张文龙,伊卓,杜凯,等. 水溶性减阻剂在页岩气滑溜水压裂中的应用进展[J]. 石油化工,2015,44(1):121-126. doi: 10.3969/j.issn.1000-8144.2015.01.034

    ZHANG Wenlong, YI Zhuo, DU Kai, et al. Application progress of water-soluble drag reducer in shale gas slick water fracturing[J]. Petrochemical Industry, 2015, 44(1):121-126. doi: 10.3969/j.issn.1000-8144.2015.01.034
    [7] 李永飞,王彦玲,曹勋臣,等. 页岩储层压裂用减阻剂的研究及应用进展[J]. 精细化工,2018,35(1):7-15.

    LI Yongfei, WANG Yanling, CAO Xunchen, et al. Research and application progress of drag reducer for shale reservoir fracturing[J]. Fine Chemical Industry, 2018, 35(1):7-15.
    [8] BRITT L, SMITH M, HADDAD Z, et al. Waterfracs: We do need proppant after all[C]. SPE 102227, 2006.
    [9] CHUNG H, HU T, YE X, et al. A friction reducer: self-cleaning to enhance conductivity for hydraulic fracturing[C]. SPE 170602, 2014.
    [10] 郭钢. 长庆油田致密油全程携砂低黏滑溜水压裂液减阻剂合成及应用[C]// 2017IPPTC国际石油石化技术会议.

    GUO Gang. Synthesis and application of drag reducer for full process sand carrying low viscosity slick water fracturing fluid in Changqing Oilfield [C]// 2017 ipptc International Petroleum and Petrochemical Technology Conference.
    [11] GOMAA A, GUPTA D, CARMAN P. Proppant transport? Viscosity is not all it’s cracked up to be[C]. SPE 173323, 2015.
    [12] 霍丙夏. 快速增黏滑溜水降阻剂的研制[D]. 天津科技大学, 2016.

    HUO Bingxia. Development of fast viscosity increasing slickwater drag reducer[D]. Tianjin University of science and technology, 2016
    [13] LIU JUNRONG, JAMES J SHENG. Investigation of countercurrent imbibition in oil-wet tight cores using NMR technology[J]. SPE J, 2020, 25:2601-2614.
    [14] JIANG, YUN, SHI, et al. Experimental study on spontaneous imbibition under confining pressure in tight sandstone cores based on low-field nuclear magnetic resonance measurements[J]. Energy & Fuels, 2018.
    [15] 温庆志,翟恒立,罗明良,等. 页岩气藏压裂支撑剂沉降及运移规律实验研究[J]. 油气地质与采收率,2012,19(6):4. doi: 10.3969/j.issn.1009-9603.2012.06.025

    WEN Qingzhi, ZHAI Hengli, LUO Mingliang, et al. Experimental study on fracturing proppant settlement and migration in shale gas reservoir[J]. Oil and Gas Geology and Recovery, 2012, 19(6):4. doi: 10.3969/j.issn.1009-9603.2012.06.025
    [16] 王海燕,霍丙夏,郭丽梅,等. 快速增黏滑溜水降阻剂的性能研究[J]. 应用化工,2016,45(12):2229-2233,2237.

    WANG Haiyan, HUO Bingxia, GUO Limei, et al. Study on the performance of rapid viscosity increasing slick water drag reducer[J]. Applied Chemical Industry, 2016, 45(12):2229-2233,2237.
    [17] ESHRATI M, AL-HASHMI AR, AL-WAHAIBI T, et al. Drag reduction using high molecular weight polyacrylamides during multiphase flow of oil and water: A parametric study[J]. Journal of Petroleum Science and Engineering, 2015, 135:403-409. doi: 10.1016/j.petrol.2015.09.028
    [18] DAI C, WANG X, LI Y, et al. Spontaneous imbibition investigation of self-dispersing silica nanofluids for enhanced oil recovery in low-permeability cores[J]. Energy & Fuels, 2017, 31(3):2663-2668.
    [19] LI Y, Dai C, ZHOU H, et al. Investigation of spontaneous imbibition by using a surfactant-free active silica water-based nanofluid for enhanced oil recovery[J]. Energy & Fuels, 2017, 32(1):287-293.
    [20] 李继山. 表面活性剂体系对渗吸过程的影响 [D]. 廊坊: 中国科学院研究生院(渗流流体力学研究所), 2006.

    LI Jishan. Effect of surfactant system on infiltration process [D]. Langfang: Graduate School of Chinese Academy of Sciences (Institute of seepage hydrodynamics), 2006.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  498
  • HTML全文浏览量:  239
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-15
  • 修回日期:  2022-04-11
  • 录用日期:  2022-06-21
  • 刊出日期:  2023-01-10

目录

    /

    返回文章
    返回