留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超临界CO2压裂缝内支撑剂运移规律

郭兴 孙晓 穆景福 乔红军 罗攀 李恒

郭兴,孙晓,穆景福,等. 超临界CO2压裂缝内支撑剂运移规律[J]. 钻井液与完井液,2022,39(5):629-637 doi: 10.12358/j.issn.1001-5620.2022.05.015
引用本文: 郭兴,孙晓,穆景福,等. 超临界CO2压裂缝内支撑剂运移规律[J]. 钻井液与完井液,2022,39(5):629-637 doi: 10.12358/j.issn.1001-5620.2022.05.015
GUO Xing, SUN Xiao, MU Jingfu, et al.Proppant Migration in Fracture Fractured with Supercritical CO2 Fracturing Fluid[J]. Drilling Fluid & Completion Fluid,2022, 39(5):629-637 doi: 10.12358/j.issn.1001-5620.2022.05.015
Citation: GUO Xing, SUN Xiao, MU Jingfu, et al.Proppant Migration in Fracture Fractured with Supercritical CO2 Fracturing Fluid[J]. Drilling Fluid & Completion Fluid,2022, 39(5):629-637 doi: 10.12358/j.issn.1001-5620.2022.05.015

超临界CO2压裂缝内支撑剂运移规律

doi: 10.12358/j.issn.1001-5620.2022.05.015
基金项目: 陕西省创新能力支撑计划项目“CO2压裂井筒温压及地层波及规律研究”(2019KJXX-023);国家科技重大专项“延安地区陆相页岩气勘探开发关键技术”课题四“非均质陆相页岩气储层压裂改造配套工艺技术”(2017ZX05039-004)
详细信息
    作者简介:

    郭兴,1991年生,工程师,毕业于中国石油大学(华东)油气井工程专业,主要从事CO2压裂技术方面研究。电话 18049604069;E-mail:1174508734@qq.com

  • 中图分类号: TE357

Proppant Migration in Fracture Fractured with Supercritical CO2 Fracturing Fluid

  • 摘要: 为了优化超临界CO2压裂工艺技术和施工参数,考虑超临界CO2压裂液中支撑剂颗粒之间相互作用,采用欧拉-拉格朗日方法中的多相质点网格方法,建立超临界CO2压裂缝内支撑剂运移数学模型,通过室内水力压裂支撑剂运移物模实验验证模型准确性,进行超临界CO2压裂缝内支撑剂运移规律计算和分析。研究表明:未增黏CO2由于黏度低,携砂效果极差,优化其他参数对携砂效果影响不大;CO2黏度增加到2.5 mPa·s即可有效提高携砂效果,采用超轻支撑剂与细尺寸颗粒组合,携砂效果与增黏到10 mPa·s效果相差不大;优化支撑剂密度比尺寸对携砂效果提高更为明显;增大排量可以提高携砂效果,但排量继续增大,其携砂效果变化较小;流体滤失对CO2携砂效果影响变化不大。该研究为解决CO2携砂性能差的问题提供了技术支撑,对超临界CO2压裂设计优化及现场施工具有重要指导意义。

     

  • 图  1  计算程序流程图

    图  2  实验系统示意图

    图  3  砂比为6%时实验砂堤形态分布图

    图  4  砂比为6%时砂堤形态数值计算结果

    图  5  不同时刻实验和数值计算的砂堤峰值高度对比图

    图  6  简单矩形裂缝示意图

    图  7  不同模拟条件下支撑剂运移结果

    图  8  PKN型裂缝示意图

    图  9  PKN裂缝中的支撑剂运移结果

    图  10  增黏至2.5 mPa·s时不同排量下支撑剂运移结果

  • [1] WANG H, LI G, SHEN Z. A feasibility analysis on shale gas exploitation with supercritical carbon dioxide[J]. Energy Sources, 2012, 34:1426-1435. doi: 10.1080/15567036.2010.529570
    [2] ROGALA A, KRZYSIEK J, BERNACIAK M, et al. Non-aqueous fracturing technologiesfor shale gas recovery[J]. Physicochem Problems Mineral Process, 2012, 49(1):313-322.
    [3] LEE J Y, WEINGARTEN M, GE S. Induced seismicity: the potential hazard from shale gas development and CO2, geologic storage[J]. Geosciences Journal, 2016, 20(1):137-148. doi: 10.1007/s12303-015-0030-5
    [4] 王香增,孙晓,罗攀,等. 非常规油气CO2压裂技术进展及应用实践[J]. 岩性油气藏,2019,31(2):4-10.

    WANG Xiangzeng, SUN Xiao, LUO Pan, et al. Progress and application of CO2 fracturing technology for unconventional oil and gas[J]. Lithologic Reservoirs, 2019, 31(2):4-10.
    [5] 黄 程,霍丽如,吴辰泓. 基于非常规油气开发的CO2资源化利用技术进展及前景[J]. 非常规油气,2022,9(1):1-9.

    HUANG Cheng, HUO Liru, WU Chenhong. Progress and prospect of CO2 resource utilization technology based on unconventional oil and gas development[J]. Unconventional Oil & Gas, 2022, 9(1):1-9.
    [6] 郭兴,孙晓,穆景福,等. 超临界CO2压裂井筒传热规律[J]. 钻井液与完井液,2021,38(6):782-789.

    GUO Xing, SUN Xiao, MU Jingfu, et al. Heat transfer in wellbores fractured with supercritical CO2 fracturing fluid[J]. Drilling Fluid & Completion Fluid, 2021, 38(6):782-789.
    [7] 陈祉娉,王长权,位予瑄,等. 基于干法压裂的CO2与致密储层置换规律的研究[J]. 非常规油气,2021,8(6):106-111.

    CHEN Zhiping, WANG Changquan, WEI Yuxuan, et al. Study on replacement law of CO2 and tight reservoirbased on dry fracturing[J]. Unconventional Oil & Gas, 2021, 8(6):106-111.
    [8] 杨洪,李彦林,郭庆,等. VF-8 清洁二氧化碳泡沫前置液压裂工艺在延长气井的应用[J]. 非常规油气,2015(4):53-57. doi: 10.3969/j.issn.2095-8471.2015.04.009

    YANG Hong, LI Yanlin, GUO Qing, et al. Application of VF-8 clean CO2 foam pad fluid fracturing technology to Yanchang gas wells[J]. Unconventional Oil & Gas, 2015(4):53-57. doi: 10.3969/j.issn.2095-8471.2015.04.009
    [9] 穆景福,高志亮,张 力,等. 清水和液态CO2压裂对页岩破裂影响实验研究[J]. 非常规油气,2021,8(5):87-92.

    MU Jingfu, GAO Zhiliang, ZHANG Li, et al. Experimental study of the effect of water and liquid CO2 fracturing on shale fracture morphology[J]. Unconventional Oil & Gas, 2021, 8(5):87-92.
    [10] GUO X, NI H, LI M, et al. Experimental study on the influence of supercritical carbon dioxide soaking pressure on the mechanical properties of shale[J]. Indian Geotechnical Journal, 2018, 48(2):384-391. doi: 10.1007/s40098-017-0289-8
    [11] BINGBAI, HONG-JIANNI, XIANSHI, et al. The experimental investigation of effect of supercritical CO2 immersion on mechanical properties and pore structure of shale[J]. Energy, 2021, 228:1.
    [12] 王猛,王海柱,李根生,等. 超临界CO2压裂缝内携砂数值模拟[J]. 石油机械,2018,46(11):72-78.

    WANG Meng, WANG Haizhu, LI Gensheng, et al. Numerical Study of Proppant Transport with Supercritical CO2 in Fracture[J]. CHINA PETROLEUM MACHINERY, 2018, 46(11):72-78.
    [13] ZENG J, LI H, ZHANG D. Numerical simulation of proppant transport in hydraulic fracture with the upscaling CFD-DEM method[J]. Journal of Natural Gas Science and Engineering, 2016, 33:264-277.
    [14] JUNSHENG ZENG, HENG LI, DONGXIAO ZHANG. Numerical simulation of proppant transport in hydraulic fracture with the upscaling CFD-DEM method[J]. Journal of Natural Gas Science & Engineering, 2016, 33:264-277.
    [15] JUNSHENG ZENG, HENG LI, DONGXIAO ZHANG. Numerical simulation of proppant transport in propagating fractures with the multi-phase particle-in-cell method[J]. Fuel, 2019, 245:316-335. doi: 10.1016/j.fuel.2019.02.056
    [16] PATANKAR N A, JOSEPH D D. Lagrangian numerical simulation of particulate flows[J]. International Journal of Multiphase Flow, 2001, 27(10):1685-1706. doi: 10.1016/S0301-9322(01)00025-8
    [17] CROWE CLAYTON T, SCHWARZKOPF JOHN D, SOMMERFELD MARTIN, et al. Multiphase flows with droplets and particles[M]. 2nd ed. CRC Press; 2012.
    [18] GU M, MOHANTY K K. Effect of foam quality on effectiveness of hydraulic fracturing in shales[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 70:273-285. doi: 10.1016/j.ijrmms.2014.05.013
    [19] ROOSTAEI M, NOURI A, FATTAHPOUR V. Numerical simulation of proppant transport in hydraulic fractures[J]. Journal of Petroleum Science and Engineering, 2018, 163:119-138. doi: 10.1016/j.petrol.2017.11.044
    [20] O’ROURKE PJ, SNIDER DM. An improved collision damping time for MP-PIC calculations of dense particle flows with applications to polydisperse sedimenting beds and colliding particle jets[J]. Chemical Engineering Science, 2010, 65(22):6014-6028. doi: 10.1016/j.ces.2010.08.032
    [21] O’ROURKE PJ, SNIDER DM. A new blended acceleration model for the particle contact forces induced by an interstitial fluid in dense particle/fluid flows[J]. Powder Technol, 2014, 256:39-51. doi: 10.1016/j.powtec.2014.01.084
    [22] SNIDER D M. An incompressible three-dimensional multiphase particle-in-cell model for dense particle flows[J]. Journal of computational physics, 2001, 170(2):523-549. doi: 10.1006/jcph.2001.6747
    [23] WEN C Y, YU Y H. Mechanics of Fluidization[J]. Chem. Eng. Process. Symp. Ser., 1966, 162:100-110.
    [24] VESOVIC V, WAKEHAM W A, OLCHOWY G A, et al. The transport properties of carbon dioxide[J]. Journalof Physical and Chemical Reference Data, 1990, 19(3):763-808. doi: 10.1063/1.555875
    [25] PERKINS T K, KERN L R. Widths of hydraulic fractures[J]. Journal of petroleum technology, 1961, 13(9):937-949. doi: 10.2118/89-PA
    [26] NORDREN R P. Propagation of a vertical hydraulic fracture[J]. Society of Petroleum Engineers Journal, 1972, 12(4):306-314.
  • 加载中
图(10)
计量
  • 文章访问数:  587
  • HTML全文浏览量:  213
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-01
  • 修回日期:  2022-07-05
  • 刊出日期:  2023-01-10

目录

    /

    返回文章
    返回