Development of New Oil Well Cement Retarder
-
摘要: 针对大温差长裸眼固井施工中,高温高压下缓凝剂加量敏感或者失效,水泥浆稠化时间缩短或不规律;施工结束后,长封固段顶部强度缓凝会导致气窜和密封完整性失效的现状。通过正交实验优化实验方案,合成耐高温有机缓凝剂,再采取有机-无机杂化的方式匹配适合的无机增强材料,利用无机和有机杂化的方法,设计层状结构,使有机材料能插层或者键合到无机材料表面。在油井水泥浆经历的低温-高温-低温过程中,随无机材料层间距的变化,低温时无机材料起增强主导作用,高温时有机材料起缓凝主导作用。优选了层状石墨烯类和双电子层水滑石类2种无机增强材料,根据无机材料本身的特点研制2种新型油井水泥缓凝剂,其中层状石墨烯类缓凝剂适应性强,耐温能力达150 ℃,110 ℃大温差条件下72 h强度大于7 MPa;双电子层水滑石类缓凝剂耐温能力也达150 ℃,加入该类缓凝剂的水泥浆流变性能易于调节,水化初期强度发展较快,但后期增强能力不如层状石墨烯类缓凝剂。上述缓凝剂室内制备工艺简单,原料易得,具有广阔的推广应用前景。Abstract: In cementing a long open section well with big temperature differences, overtreatment or inadequate treatment of the cement slurry with retarders at high temperature high pressure will cause the thickening time of the cement slurry to shorten or change irregularly. After the cementing job, the retarding of the top of a long cementing section will cause gas channeling and failure of the sealing integrity of the cement sheath. Through optimized orthogonal experiment, a high temperature organic retarder was developed. By hybridizing an organic material and an inorganic material, and designing a layered structure, the organic material can be intercalated into or bonded with the surfaces of the inorganic material. The cement slurry in the cementing operation will experience a low temperature – high temperature – low temperature process, during which the spacing between the layers of the inorganic material will change with the process. At low temperatures, the inorganic material will dominate the strengthening action, while at high temperatures, the organic material dominates the retarding action. Two inorganic strengthening materials, one is a layered graphene, and the other a double electron layered hydrotalcite, were selected for developing two kinds of new oil well cement retarders. The graphene retarder has good adaptability, it is stable at 150 ℃, and its 72 h strength at 110 ℃ temperature difference is greater than 7 MPa. The double electron layered hydrotalcite is also stable at 150 ℃. Cement slurries treated with the hydrotalcite retarder have rheology that is easy to adjust, and the initial strength develops fast, but the late strength development is not as good as that of the graphene retarder. These retarders can be produced with simple techniques, the raw materials are easy to obtain, and therefore, will have broad promotion and application prospects.
-
Key words:
- Well cementing /
- Retarder /
- Big temperature difference /
- Cement slurry
-
表 1 有机缓凝剂单体优选的正交实验及其对水泥浆性能的影响
实验方案 A1 A2 A3 A4 t稠化/min p/MPa 1# 5 4 2 1 300 14 2# 5 3 3 2 270 16 3# 5 4 4 1 360 8 4# 4 4 3 1 320 11 5# 4 3 4 1 290 15 6# 4 4 2 2 310 12 7# 3 4 4 2 340 9 8# 3 3 2 1 250 18 9# 3 4 3 1 320 10 均值1 310.000 320.000 286.667 303.333 均值2 306.667 270.000 303.333 306.667 均值3 303.333 330.000 330.000 310.000 极差 6.667 60.000 43.333 6.667 注:稠化实验条件为:130 ℃、60 MPa、60 min,抗压强度养护条件为:90 ℃、21 MPa、72 h 表 2 有机缓凝剂合成的实验方案
实验方案 T/℃ 反应方式 实验结果 1# 20 水溶性 单体难溶解,
反应速度缓慢2# 40 水溶性 单体容易溶解,
但反应速度较慢3# 50 水溶性 单体容易溶解,
反应速度适中4# 60 水溶性 单体容易溶解,
反应速度较快表 3 无机增强材料的优选
类型 性能
特征粒径/
nm水泥浆的
相容性90 ℃水泥石
增强率/%B1 亲水改性颗粒 592 好 60 B2 水溶性分散液 430 不好 B3 疏水型纳米颗粒 385 好 80 B4 疏水型纳米粉末 342 好 150 C1 亲水改性颗粒 422 好 40 C2 疏水纳米粉末 732 不好 表 4 层状石墨烯类缓凝剂对水泥浆体基本性能的影响
缓凝剂/% φ600/φ300/φ200/φ100/φ6/φ3 FLAPI/mL 0.1 −/240/176/105/16/12 24.0 0.3 −/220/150/95/10/8 26.2 0.5 200/120/98/71/8/6 28.4 0.8 180/104/78/55/6/4 30.0 1.0 150/84/60/35/3/2 32.6 表 5 双电子层水滑石类缓凝剂的水泥浆体系流变性能
缓凝剂/% φ600 φ300 φ200 φ100 φ6 φ3 FLAPI/mL 0.1 250 153 24 16 26.4 0.3 290 200 132 14 12 28.2 0.5 295 200 178 110 10 8 30.4 0.8 268 197 78 85 8 6 32.0 1.0 243 134 93 54 5 3 34.6 注:流变性能的测试条件为90 ℃ -
[1] 刘崇建, 黄柏宗, 徐同台, 等. 油气井注水泥理论与应用[M]. 北京: 石油工业出版社, 2001.LIU Chongjian, HUANG Baizong, XU Tongtai. Cementing oil and gas wells in theory and Applications[M]. Beijing: Petroleum Industry Press, 2001. [2] 张德润, 张旭. 固井液的设计及应用(下册)[M]. 北京: 石油工业出版社, 2000.ZHANG Derun, ZHANG Xu. Cementing fluid design and application (two volumes) [M]. Beijing: Petroleum Industry Press, 2000. [3] 李波,邵鲁华,韩立国,等. 固井用水泥外加剂研究进展[J]. 当代化工,2014,43(5):863-866.LI Bo, SHAO Luhua, HAN Liguo. Research progress of cement additive for cementing[J]. Modern chemical industry, 2014, 43(5):863-866. [4] 侯海欧,邹亦玮. 固井用缓凝剂的研究进展[J]. 化工管理,2022(9):61-63.HOU Haiou,ZOU Yiwei. research progress of retarder for cementing[J]. Chemical Enterprise Management, 2022(9):61-63. [5] 邓双. 多尺度无机晶须增强油井水泥基材料及机理研究[D]. 成都;西南石油大学, 2010.DENG Shuang. Study on multi-scale inorganic whisker reinforced oil well cement-based materials and mechanism[D]. Chengdu: Southwest Petroleum University, 2010. [6] 李腾飞,王泽林,许艳. 多酸插层水滑石复合材料的新进展[J]. 中国科学: 化学,2017,47(4):451-464.LI Teng,WANG Zelin,XU Yan. Recent progress in polyoxometalate-intercalated layered double hydroxides composite materials[J]. Scientia Sinica Chimica, 2017, 47(4):451-464. [7] 吕骄阳,李思李,田波,等. 石墨烯在水泥净浆中的分散特性[J]. 复合材料学报,2021,39(10):4746-4756.LYU Jiaoyang , LI Sili, TIAN Bo,et al. Dispersion characteristics of graphene in cement paste[J]. Acta Materiae Compositae Sinica, 2021, 39(10):4746-4756. [8] 李晓岚,郑志军,郭鹏,等. 高温油井水泥缓凝剂ZRT-1的合成及性能[J]. 钻井液与完井液,2020,37(1):93-96.LI Xiaolan, ZHENG Zhijun, GUO Peng. Synthesis and performance evaluation of high temperature oil well cement retarder ZRT-1[J]. Drilling Fluid & Completion Fluid, 2020, 37(1):93-96. [9] 唐宁,岑文飞,赵明宇,等. 钙铝水滑石在水泥基材中的氯离子固化行为研究[J]. 沈阳建筑大学学报,2021,37(5):901-906.TANG Ning ,CEN Wenfei ,ZHAO Mingyu,et al. Chloride ions binding of calcium aluminum hydrotalcite in cementations material[J]. Journal of Shenyang Jianzhu university(natural science) , 2021, 37(5):901-906. [10] 郑艳梅, 李文, 吴立新. 热相应型有机-无机杂化超分子复合物的合成与结构表征[C]// 中国化学会第十四届胶体与界面化学会议.2013.ZHENG Yanmei, LI Wen, WU Lixin. Synthesis and structure characterization of thermoresponsive organic-inorganic supramolecular complex[C]//The 14th colloid and Interface Chemistry Conference of Chinese Chemical Society.2013. [11] 王悦,王琴,郑海宇,等. 分散剂对石墨烯水泥基复合材料压敏性能的影响研究[J]. 硅酸盐通报,2021,40(8):2515-2526.WANG Yue, WANG Qin, ZHENG Haiyu,et al. Influence of dispersant on pressure sensitive properties of grapheme cement based composites[J]. Bulletin of the Chinese ceramic society, 2021, 40(8):2515-2526. [12] 曲建峰,邱正松,郭保雨,等. 氧化石墨烯新型抗高温降滤失剂的合成与评价[J]. 钻井液与完井液,2017,34(4):9-14.QU Jianfeng, QIU Zhengsong, GUO Baoyu,et al. Synthesis and evaluation of a new graphene oxide high temperature filter loss reducer[J]. Drilling Fluid & Completion Fluid, 2017, 34(4):9-14. [13] 彭志刚,张博建,冯茜,等. 聚合物插层蒙脱土复合型高温缓凝剂的制备及性能[J]. 硅酸盐学报,2018,46(8):1087-1094.PENG Zhigang, ZHANG Bojian, FENG Qian, et al. Preparation and performance of polymer intercalated montmorillonite composites for high-temperature retarder[J]. The Journal of Silicate, 2018, 46(8):1087-1094. -