The Synthesis and Evaluation of a Pentaerythritol-Based Hyperbranched Polymer Filter Loss Reducer
-
摘要: 针对现有的降滤失剂在使用过程中存在对钻井液流变性影响大、抗温和抗盐能力不足的问题,以季戊四醇为核心结构的多烯基单体四烯丙基醚(PPTE),与2-丙烯酰胺-2-甲基丙磺酸(AMPS)、N-乙烯基吡咯烷酮(NVP)、丙烯酰胺(AM)为原料,通过自由基聚合反应合成一种基于季戊四醇的超支化降滤失剂PPAAN-1。在正交实验的基础上,进一步考虑四烯丙基醚加量对降滤失剂的表观黏度的影响,最终确认了降滤失剂PPAAN-1的最佳合成条件:PPTE加量为17%、AMPS∶AM∶NVP=2∶6∶1、反应温度为55 ℃、引发剂(AIBN)为0.2%。在室内评价其降滤失效果、流变性能、热稳定性能以及其对滤饼质量的影响。实验结果表明,与国外降滤失剂Driscal D和DrisTemp相比,降滤失剂PPAAN-1对钻井液流变性能影响小,同时拥有良好的热稳定性能以及降滤失效果,其热降解温度高达302.29 ℃,在30%氯化钠盐水浆(1%PPAAN-1)中的API滤失量(220 ℃老化后)为9.8 mL、高温高压滤失量(150 ℃)为18.5 mL;在高温高矿化度的条件下降滤失剂PPAAN-1可形成网状结构,并吸附在黏土表面,提高钻井液中黏土颗粒粒径的分布范围,从而形成致密的泥饼,以达到降滤失的目的。Abstract: Filter loss reducers presently in use have some deficiencies such as great negative impact on mud rheology, poor high temperature resistance and poor salt contamination resistance etc. To overcome these deficiencies, a pentaerythritol-based hyperbranched polymer filter loss reducer PPAAN-1 was developed through radical polymerization with tetraallyl ether (PPTE, a polyene monomer with pentaerythritol as its core molecular structure), 2-acrylamido-2-methylpropanesulfonic acid (AMPS), N-vinyl pyrrolidone (NVP) and acrylamide (AM) as raw material. Based on orthogonal experiment results, the effects of the concentration of the tetraallyl ether on the apparent viscosity of the filter loss reducer PPAAN-1 was also studied. The optimum synthesis condition of PPAAN-1 was finally determined as follows: concentration of PPTE = 17%, AMPS∶AM∶NVP = 2 ∶6∶1, reaction temperature=55 ℃, initiator (AIBN) concentration = 0.2%. In laboratory evaluation, the properties of PPAAN-1 were compared with Driscal and DrisTemp. PPAAN-1 has little effect on mud rheology, good thermal stability and good filtration control capacity. The thermal decomposition temperature of PPAAN-1 is 302.29 ℃. A 30% NaCl drilling fluid treated with 1% PPAAN-1 had API filtration rate (220 ℃) of 9.8 mL and HTHP (150 ℃) filtration rate of 18.5 mL. In high temperature high salinity conditions, PPAAN-1 can form a network structure and adsorb on the surfaces of the clay particles, thereby widening the range of the particle size distribution of clays in a drilling fluid, helping the drilling fluid form dense mud cakes, and reducing the filtration rate of the drilling fluid.
-
表 1 正交实验因素水平
水平 因素 A B C D PPTE/% AMPS∶AM∶NVP T反应/℃ AIBN/% 1 5 8∶6∶1 55 0.2 2 15 2∶6∶1 60 0.3 3 25 2∶6∶4 65 0.4 表 2 PPAAN-1的合成条件正交实验设计及结果
序号 A B C D FLAPI/mL AV/mPa·s 1 1 1 1 1 16.0 19.5 2 1 2 2 2 14.8 24.5 3 1 3 3 3 17.2 28.0 4 2 1 2 3 15.5 15.5 5 2 2 3 1 10.8 12.0 6 2 3 1 2 12.4 10.0 7 3 1 3 2 11.4 32.0 8 3 2 1 3 8.4 27.5 9 3 3 2 1 9.8 34.5 表 3 三因素对钻井液的表现黏度和降滤失能力的影响
FLAPI/mL AV/mPa·s A B C D A B C D k1 16.00 14.3 12.27 12.20 24.00 22.33 19.00 22.00 k2 12.90 11.33 13.37 12.87 12.50 21.33 24.83 22.17 k3 9.96 13.13 13.13 13.70 31.33 24.17 24.00 23.67 R 7.13 2.97 0.87 1.50 18.83 1.83 5.83 1.67 表 4 在淡水浆中加入不同浓度PPAAN-1的流变性
PPAAN-1/
%220 ℃老化前 220 ℃老化后 AV/
mPa·sPV/
mPa·sYP/
PaAV/
mPa·sPV/
mPa·sYP/
Pa0 4.0 3 1.0 2.5 2 0.5 0.5 7.0 5 2.0 2.5 1 1.5 1.0 11.5 10 1.5 7.0 5 2.0 1.5 16.0 13 3.0 14.5 11 3.5 2.0 23.5 19 4.5 17.5 15 2.5 表 5 NaCl用量对1%PPAAN-1盐水浆流变性能的影响
NaCl/
%220 ℃老化前 220 ℃老化后 AV/
mPa·sPV/
mPa·sYP/
PaAV/
mPa·sPV/
mPa·sYP/
Pa0 11.5 10 1.5 7.0 5 2.0 10 9.5 8 1.5 7.5 6 1.5 20 8.5 6 2.5 7.0 5 2.0 30 7.0 6 1.0 5.5 5 0.5 表 6 CaCl2用量对1%PPAAN-1盐水浆性能的影响
CaCl2/
%220 ℃老化前 220 ℃老化后 AV/
mPa·sPV/
mPa·sYP/
PaFLAPI/
mLAV/
mPa·sPV/
mPa·sYP/
PaFLAPI /
mL0 11.5 10 1.5 4.6 7.0 5 2.0 7.2 0.5 8.0 7 1.0 8.4 6.5 5 1.0 13.3 1.0 7.0 5 2.0 9.8 4.5 3 1.5 16.5 -
[1] LIU J, GUO B, LI G, et al. Synthesis and performance of environmental friendly starch based filtrate reducers forwater based drilling fluids[J]. Fresenius Environmental Bulletin, 2019, 28(7):5618-5623. [2] 刘均一,郭保雨,王勇,等. 环保型水基钻井液在胜利油田的研究与应用[J]. 钻井液与完井液,2020,37(1):64-70.LIU Junyi, GUO Baoyu, WANG Yong, et al. Research and application of environmentally friendly water-based drilling fluids in Shengli oilfield[J]. Drilling Fluid & Completion Fluid, 2020, 37(1):64-70. [3] 陈馥,罗先波,熊俊杰. 一种改性淀粉钻井液降滤失剂的合成与性能评价[J]. 应用化工,2011,40(5):850-852. doi: 10.3969/j.issn.1671-3206.2011.05.031CHEN Fu, LUO Xianbo, XIONG Junjie. Synthesis and performance evaluation of a modified starch drilling fluid filter loss reduction agent[J]. Applied Chemistry, 2011, 40(5):850-852. doi: 10.3969/j.issn.1671-3206.2011.05.031 [4] 马喜平,李俊辰,周有祯,等. 两性离子聚合物降滤失剂的合成及评价[J]. 石油化工,2020,49(1):75-82. doi: 10.3969/j.issn.1000-8144.2020.01.012MA Xiping, LI Junchen, ZHOU Youzhen, et al. Synthesis and evaluation of amphiphilic polymeric filter loss reducing agents[J]. Petrochemicals, 2020, 49(1):75-82. doi: 10.3969/j.issn.1000-8144.2020.01.012 [5] CAO J, MENG L, YANG Y, et al. Novel acrylamide/2-acrylamide-2-methylpropanesulfonic acid/4-vinylpyridine terpolymer as an anti-calcium contamination fluid-loss additive for water-based drilling fluids[J]. Energy & Fuels, 2017, 31(11):11963-11970. [6] ZHENG W, WU X, HUANG Y. Impact of polymer addition, electrolyte, clay and antioxidant on rheological properties of polymer fluid at high temperature and high pressure[J]. Journal of Petroleum Exploration and Production Technology, 2020, 10(2):663-671. [7] 周国伟, 邱正松, 钟汉毅, 等. 新型抗高温降滤失剂GDF-1的研制及性能评价[J/OL]. 应用化工: 1-8[2022-01-07].ZHOU Guowei, QIU Zhengsong, ZHONG Hanyi, et al. Development and performance evaluation of a new high temperature resistant filtrate reducer gdf-1 [J/OL] Applied chemical industry: 1-8 [2022-01-07]. [8] OSEH J O, MOHD N, ISMAIL I, et al. A novel approach to enhance rheological and filtration properties of water-based mud using polypropylene-silica nanocomposite[J].Journal of Petroleum Science and Engineering, 2019, 181:106264. doi: 10.1016/j.petrol.2019.106264 [9] LIU L, PU X, RONG K, et al. Comb-shaped copolymer as filtrate loss reducer for water‐based drilling fluid[J]. Journal of Applied Polymer Science, 2018, 135(11):45989. [10] 张小平,黄艳琴,任厚基,等. 超支化聚合物研究最新进展[J]. 科学通报,2011,56(21):13.ZHANG Xiaoping, HUANG Yanqin, REN Houji, et al. Recent advances in the study of hyperbranched polymers[J]. Science Bulletin, 2011, 56(21):13. [11] 詹宁宁,张丽锋,赵新星,等. 超支化聚合物的合成及应用[J]. 材料导报,2021,35(S2):616-626.ZHAN Ningning, ZHANG Lifeng, ZHAN Xinxing, et al. Synthesis and application of hyperbranched polymers[J]. Materials Direct, 2021, 35(S2):616-626. [12] XING A, SUN Q, MENG Y, et al. A hydroxyl-containing hyperbranched polymer as a multi-purpose modifier for a dental epoxy[J]. Reactive and Functional Polymers, 2020, 149:104505. doi: 10.1016/j.reactfunctpolym.2020.104505 [13] 唐新德,张其震,侯昭升,等. 新型树状大分子核醚-四硅烷的合成[J]. 有机化学,2004,24(1):103-105. doi: 10.3321/j.issn:0253-2786.2004.01.021TANG Xinde, ZHANG Qizhen, HOU Zhaosheng, et al. Synthesis of novel dendritic macromolecular nucleophile-tetrasilanes[J]. Organic Chemistry, 2004, 24(1):103-105. doi: 10.3321/j.issn:0253-2786.2004.01.021 [14] 许娟,彭修军,崔茂荣,等. 降滤失剂PAX的吸附特性[J]. 钻井液与完井液,2004(4):15-17, 72. doi: 10.3969/j.issn.1001-5620.2004.04.004XU Juan, PENG Xiujun, CUI Maorong, et al. Adsorption properties of the filter loss reducing agent PAX[J]. Drilling Fluid & Completion Fluid, 2004(4):15-17, 72. doi: 10.3969/j.issn.1001-5620.2004.04.004 [15] 张健, 张黎明, 李卓美, 等. 疏水化水溶性两性纤维素接枝共聚物与黏土的相互作用[C]// 全国高分子学术报告会. 中国化学会, 2001.ZHANG Jian, ZHANG Liming, LI Zhuomei, et al. Interaction of hydrophobic water-soluble amphiphilic cellulose graft copolymers with clay [C]// National Polymer Symposium. Chinese Chemical Society, 2001. [16] 胡子乔,刘四海,刘金华,等. 水溶性聚合物热稳定性研究进展[J]. 化学通报,2016,79(8):714-718,722. doi: 10.14159/j.cnki.0441-3776.2016.08.004HU Ziqiao, LIU Sihai, LIU Jinhua, et al. Advances in the study of thermal stability of water-soluble polymers[J]. Chemical Bulletin, 2016, 79(8):714-718,722. doi: 10.14159/j.cnki.0441-3776.2016.08.004 [17] 刘亦凡,鲁盈,李炎军,等. 黏土-水悬浮体系热滚老化后的分散性[J]. 科学技术与工程,2019,19(35):148-152. doi: 10.3969/j.issn.1671-1815.2019.35.021LIU Yifan, LU Ying, LI Yanjun, et al. Dispersion of clay-water suspension system after hot roll aging[J]. Science Technology and Engineering, 2019, 19(35):148-152. doi: 10.3969/j.issn.1671-1815.2019.35.021 [18] RAZAVI O, VAJARGAH A K, VAN OORT E, et al. Optimum particle size distribution design for lost circulation control and wellbore strengthening[J]. Journal of Natural Gas Science and Engineering, 2016, 35:836-850. [19] 张春光,孙明波. 降滤失剂作用机理研究——对不同类型降滤失剂的分析[J]. 钻井液与完井液,1996,13(3):7.ZHANG Chunguang, SUN Mingbo. Study on the mechanism of action of filter loss reducing agents-analysis of different types of filter loss reducing agents[J]. Drilling Fluid & Completion Fluid, 1996, 13(3):7. [20] CHEN Y, WU R, ZHOU J, et al. A novel hyper-cross-linked polymer for high-efficient fluid-loss control in oil-based drilling fluids[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626:127004. doi: 10.1016/j.colsurfa.2021.127004 [21] ARTHUR K G, PEDEN J M. The evaluation of drilling fluid filter cake properties and their influence on fluid loss[C]//International Meeting on Petroleum Engineering. OnePetro, 1988. [22] 姚如钢,张振华,彭春耀,等. 钻井液滤失造壁性能评价方法研究现状[J]. 钻井液与完井液,2016,33(6):1-9.YAO rugang, ZHANG Zhenhua, PENG Chunyao, et al. Research status of evaluation methods of drilling fluid filtration and wall building performance[J]. Drilling Fluid & Completion Fluid, 2016, 33(6):1-9. -