A Synthetic Based Drilling Fluid with Strong Plugging Capacity for Block Wushi17-2
-
摘要: 乌石17-2油田是南海西部油气藏的重要组成部分,具有重大的勘探开发前景。然而,该区块存在严重的井壁失稳、漏失及储层损害等潜在问题,对钻井液性能提出严峻考验。同时该区块处于国家自然保护区附近,对钻井液环保性要求极高。基于此,该研究提出以气制油作为基液,制备高性能合成基钻井液的研究思路,并优选主、辅乳化剂及高效封堵剂OSD-2,最终形成了一套密度达到 1.5 g/cm3、抗温达150 ℃、高温高压滤失量不大于5 mL,破乳电压不小于400 V 的高性能合成基钻井液体系。此外,该体系具有优异的流变稳定性、润滑性、抑制能力和抗劣质红土侵污染性能,可以满足现场施工要求,并有效解决现场存在的工程问题。Abstract: The block Wushi17-2 is an important part of the Nanhai West Oilfield and has significant exploration and development prospects. However, there are severe potential downhole problems encountered during drilling operations, such as borehole wall instability, mud losses and formation damage, has imposed serious challenges to the properties of drilling fluids. Since this block is located nearby a national nature reserve, the environmental friendly performance of drilling fluids remains a great challenging. To deal with these problems, this study proposes the research idea of formulating high performance synthetic based drilling fluid with gas-to-liquid (GTL), followed by optimizing with a primary emulsifier, a secondary emulsifier and a high efficiency plugging agent OSD-2, eventually formulating a synthetic based drilling fluid with a density of 1.5 g/cm3, a temperature resistance of 150 ℃, a high temperature high pressure filtration rate of less than 5 mL and an electric stability of greater than 400 V. The synthetic based drilling fluid has excellent rheology, lubricity, inhibitive capacity and resistance to clay contamination (resistant to contamination of 10% poor-quality clay). The synthetic based drilling fluid satisfied the demands of field operation and helped to solve drilling fluid-related problems during drilling process.
-
表 1 主乳化剂EnvaMul 1699与辅乳化剂EnvaMul 1767加量优选实验
EnvaMul 1699/% EnvaMul 1767/% 实验
条件PV/
mPa·sYP/
PaFLHTHP/
mLES/
V2 2 滚前 15 8.7 450 150 ℃、16 h 18 5.6 9.8 415 3 3 滚前 17 5.6 516 150 ℃、16 h 27 6.6 7.4 419 注:FLHTHP在150 ℃、3.5 MPa、30 min下测定 表 2 主乳化剂THEM-1与辅乳化剂THEM-2加量优选实验
THEM-1/
%THEM-2/
%实验
条件PV/
mPa·sYP/
PaFLHTHP/
mLES/
V2 2 滚前 17 2.0 480 150 ℃、16 h 18 1.0 6.0 430 3 3 滚前 16 6.1 533 150 ℃、16 h 18 4.6 5.4 440 注:FLHTHP在150 ℃、3.5 MPa、30 min下测定 表 3 封堵剂种类确定
配方 条件 AV/
mPa·sPV/
mPa·sYP/
PaFLHTHP/
mLES/
V0# 热滚前 20.0 16 6.1 533 150 ℃、 16 h 22.5 18 4.6 5.4 440 1# 热滚前 20.0 15 5.1 581 150 ℃、 16 h 21.5 18 3.6 4.4 467 2# 热滚前 19.0 13 7.1 568 150 ℃、 16 h 19.5 17 2.8 7.0 465 3# 热滚前 16.5 11 5.6 598 150 ℃、 16 h 21.0 15 6.1 4.8 510 注:FLHTHP在150 ℃、3.5 MPa、30 min下测定 表 4 合成基钻井液抗劣质红土污染性能评价
劣质红土/
%实验
条件PV/
mPa·sYP/
PaFLHTHP/
mLES/
V备注 5 热滚前 17 6.6 572 污染后 18 7.7 584 热滚后 22 5.1 468 无沉淀 10 热滚前 19 3.1 512 污染后 18 6.6 528 热滚后 21 4.6 2.8 528 无沉淀 15 热滚前 15 5.1 510 污染后 18 8.7 485 热滚后 22 6.1 3.0 435 无沉淀 注:热滚条件为150 ℃、16 h 表 5 合成基钻井液优化前后的性能对比
实验条件 PV/
mPa·sYP/
Pa滤饼黏
滞系数FLHTHP/
mL抗劣质红
土污染/%岩屑滚动
回收率/%优化前 29.5 5.6 16.0 87.3 优化后 21.5 3.6 0.13 4.4 10 100.0 -
[1] 徐同台,彭芳芳,潘小镛,等. 气制油的性质与气制油钻井液[J]. 钻井液与完井液,2010,27(5):75-78,93. doi: 10.3969/j.issn.1001-5620.2010.05.023XU Tongtai, PENG Fangfang, PAN Xiaomong, et al. Properties of gas-to-oil and drilling fluid for gas-to-oil[J]. Drilling Fluid & Completion Fluid, 2010, 27(5):75-78,93. doi: 10.3969/j.issn.1001-5620.2010.05.023 [2] 朱秀玉. 恒流变合成基钻井液的研究与评价[D]. 东北石油大学, 2020.ZHU Xiuyu. Research and evaluation of constant rheological synthetic base drilling fluid[D]. Northeast Petroleum University, 2020. [3] 沈丽,王宝田,宫新军,等. 气制油合成基钻井液流变性能影响评价[J]. 石油与天然气化工,2013,42(1):53-57. doi: 10.3969/j.issn.1007-3426.2013.01.012SHEN Li, WANG Baotian, GONG Xinjun, et al. Rheological performance impact assessment of synthetic-based drilling fluid from gas to oil[J]. Petroleum and Natural Gas Chemical Industry, 2013, 42(1):53-57. doi: 10.3969/j.issn.1007-3426.2013.01.012 [4] 王茂功,徐显广,孙金声,等. 气制油合成基钻井液关键处理剂研制与应用[J]. 钻井液与完井液,2016,33(3):30-34,40. doi: 10.3969/j.issn.1001-5620.2016.03.006WANG Maogong, XU Xianguang, SUN Jinsheng, et al. Development and application of key additives for synthetic drilling fluid from gas to oil[J]. Drilling Fluid & Completion Fluid, 2016, 33(3):30-34,40. doi: 10.3969/j.issn.1001-5620.2016.03.006 [5] 罗健生,莫成孝,刘自明,等. 气制油合成基钻井液研究与应用[J]. 钻井液与完井液,2009,26(2):7-11. doi: 10.3969/j.issn.1001-5620.2009.02.002LUO Jiansheng, MO Chengxiao, LIU Ziming, et al. Research and application of synthetic-based drilling fluid for gas-to-oil[J]. Drilling Fluid & Completion Fluid, 2009, 26(2):7-11. doi: 10.3969/j.issn.1001-5620.2009.02.002 [6] KOGBARA R B, YIMING W, IYENGAR S R, et al. Dataset on the influence of gas-to-liquid biosludge on arid soil properties and growth performance of alfalfa[J]. Data in Brief, 2020, 28:105074. [7] BROWN D M, LYON D, SAUNDERS D M V,et al. Biodegradability assessment of complex, hydrophobic substances: Insights from gas-to-liquid (GTL) fuel and solvent testing[J]. Science of the Total Environment, 2020, 727:138528. [8] BOOGAARD P J, CARRILLO J C, ROBERTS L G, et al. Toxicological and ecotoxicological properties of gas-to-liquid (GTL) products. 1. Mammalian toxicology[J]. Critical Reviews in Toxicology, 2017, 47(2):121-144. [9] ABDUL-MANAN A F N, BAKOR R Y, ZUBAIL A H. Analyzing the effects of Gas-to-Liquid (GTL) diesel blending on the efficiency and emissions of petroleum refineries and transport fuels in the US and Europe[J]. Transportation Research Part D: Transport and Environment, 2018, 59:259-267. [10] JIANG G, SUN J, HE Y, et al. Novel water-based drilling and completion fluid technology to improve wellbore quality during drilling and protect unconventional reservoirs[J]. Engineering, 2021. doi: 10.1016/j.eng.2021.11.014 -