Optimization of Hydrate Inhibition Performance of Deep Water Shallow Drilling Fluid
-
摘要: 深水浅层地质条件复杂,土质疏松、作业压力窗口窄、海底泥线温度低、井筒内易生成水合物,钻井液面临着井壁稳定、低温流变性调控难度大以及环境污染等问题,钻井安全作业风险高。为此,以南海某深水井浅层钻井为研究对象,总结分析了深水浅层钻井液应用现状,建立了深水浅层钻进ECD计算模型和井筒温度场计算模型,分析了深水浅层钻井期间的井筒温度场分布规律和水合物生成风险,结合数值模拟和室内实验,进行了浅层钻井液体系水合物抑制性能优化。研究结果表明,建立的深水浅层钻进ECD计算模型和井筒温度场计算模型,与实测数据对比模型计算平均误差小于8%;计算得出深水浅层钻进期间井筒水合物生成区域范围随着钻井深度的增加逐渐减小,但钻进准备期间及钻进初期,井筒内仍存在水合物生成风险;常规半防钻井液体系优化为HEM+14%NaCl+6%KCl,可满足正常钻进期间作业需求。结论认为:通过深水浅层钻井液体系优化,可以减少钻井液体系中水合物抑制剂的加入,简化钻井液配方,降低钻井成本,提高作业效率,为深水油气钻探钻井液设计提供指导。Abstract: The deep water and shallow geological conditions are complex, the soil is loose, the operating pressure window is narrow, the submarine mud line temperature is low, and hydrates are easy to form in the well bore. The drilling fluid is faced with problems such as well bore stability, difficulty in regulating low-temperature rheology, environmental pollution and so on, so the drilling safety operation risk is high. Therefore, taking the shallow drilling of a deep water well in the South China Sea as the research object, the application status of deep-water shallow drilling fluid are summarized and analyzed, the ECD calculation model and well bore temperature field calculation model is established, and the well bore temperature field distribution and hydrate formation risk during deep-water shallow drilling is analyzed. The hydrate inhibition performance of shallow drilling fluid system is optimized in combination with numerical simulation and indoor experiments. The following research results are obtained. First, compared with the measured data, the average error of ECD calculation model and well bore temperature field calculation model for deep-water shallow drilling is less than 8%; Second, it is calculated that the range of hydrate formation area in the well bore gradually decreases with the increase of drilling depth, but there is still a risk of hydrate formation in the well bore during drilling preparation and early drilling; Third, the conventional semi preventive drilling fluid system is optimized as HEM+14%NaCl+6%KCl, which can meet the operation requirements during normal drilling. It is concluded that through the optimization of deep water shallow drilling fluid system, the addition of hydrate inhibitor can be reduced, the drilling fluid formula can be simplified, the drilling cost can be reduced, and the operation efficiency can be improved, which can provide guidance for the drilling fluid design of deep water oil and gas drilling.
-
Key words:
- Deep water and shallow layer /
- Drilling fluid /
- Hydrate inhibitor /
- Generation area /
- Optimization
-
表 1 LX-1井三开钻进期间水合物生成区域预测
钻进深度/m 0
(钻进准备)2560 2575 2600 水合物生成区域/m 540~1795 454~1495 549~1098 0 表 2 HEM钻井液体系的水合物生成抑制性实验结果
t/min T夹套/℃ T液相/℃ T气相/℃ 釜内压力/MPa 反馈力矩/(N·m) 气体物质的量/mol 30 17.42 17.97 17.92 14.03 16.0 3.380 87 60 15.99 16.92 16.92 13.94 15.9 3.374 59 90 14.57 15.63 15.68 13.82 15.7 3.364 39 120 13.14 14.25 14.40 13.69 15.9 3.352 00 180 10.28 11.51 11.75 13.45 15.8 3.333 89 360 1.75 6.57 8.74 10.35 19.3 2.522 95 720 16.01 14.85 16.17 11.92 0 2.842 77 1020 15.98 15.81 16.47 13.31 0 3.211 41 1200 15.98 15.91 16.54 13.64 0 3.299 77 1350 15.93 15.90 16.86 13.80 0 3.337 58 1500 15.96 15.99 16.91 13.87 0 3.355 72 -
[1] 王卫东. 南海深水钻井液的应用探讨[J]. 化工管理,2021(29):192-193. doi: 10.19900/j.cnki.ISSN1008-4800.2021.29.092WANG Weidong. Application of deep-water drilling fluid in the South China Sea[J]. Chemical Enterprise Management, 2021(29):192-193. doi: 10.19900/j.cnki.ISSN1008-4800.2021.29.092 [2] 林云涛. 海洋深水钻井完井液关键技术研究[J]. 中国石油和化工标准与质量,2021,41(18):197-198.LIN Yuntao. Research on key technologies of offshore deepwater drilling and completion fluid[J]. China Petroleum and Chemical Standard and Quality, 2021, 41(18):197-198. [3] 白小东,黄进军,侯勤立. 深水钻井液中天然气水合物的成因分析及其防治措施[J]. 精细石油化工进展,2004(4):52-54,58. doi: 10.3969/j.issn.1009-8348.2004.04.015BAI Xiaodong, HUANG Jinjun, HOU Qinli. Contributing factors and preventing measures of hydrate in deep water drilling mud[J]. Advances in Fine Petrochemicals, 2004(4):52-54,58. doi: 10.3969/j.issn.1009-8348.2004.04.015 [4] 徐加放,邱正松,何畅. 深水钻井液中水合物抑制剂的优化[J]. 石油学报,2011,32(1):149-152. doi: 10.7623/syxb201101025XU Jiafang, QIU Zhengsong, HE Chang. The inhibitor optimization of gas hydrates in deepwater drilling fluids[J]. Acta Petrolei Sinica, 2011, 32(1):149-152. doi: 10.7623/syxb201101025 [5] 赵欣,邱正松,江琳,等. 深水钻井液高效水合物抑制剂研究[J]. 中国石油大学学报(自然科学版),2013,37(6):159-164.ZHAO Xin, QIU Zhengsong, JIANG Lin, et al. Study on high performance gas hydrate inhibitor in deepwater drilling fluid[J]. Journal of China University of Petroleum(Edition of Natural Science) , 2013, 37(6):159-164. [6] 张昊,蒋国盛,高绍智,等. 海水钻井液的水合物抑制性实验研究[J]. 钻井液与完井液,2009,26(1):23-25,90-91. doi: 10.3969/j.issn.1001-5620.2009.01.009ZHANG Hao, JIANG Guosheng, GAO Shaozhi, et al. Experimental studies on the inhibition of hydrates using seawater drilling fluids[J]. Drilling Fluid & Completion Fluid, 2009, 26(1):23-25,90-91. doi: 10.3969/j.issn.1001-5620.2009.01.009 [7] 刘坤翔. 深水表层钻井作业工艺及提速技术研究[J]. 石油化工建设,2022,44(3):171-173. doi: 10.3969/j.issn.1672-9323.2022.03.051LIU Kunxiang. Research on deepwater surface drilling technology and speed up technology[J]. Petroleum and Chemical Construction, 2022, 44(3):171-173. doi: 10.3969/j.issn.1672-9323.2022.03.051 [8] 庞照宇,张会增,程远方,等. 深水钻井钻遇水合物地层井壁稳定性研究[J]. 鲁东大学学报(自然科学版),2021,37(3):281-288.PANG Zhaoyu, ZHANG Huizeng, CHENG Yuanfang, et al. The wellbore stability during deep-water drilling operations in hydrate formation[J]. Journal of Ludong University(Natural Science Edition) , 2021, 37(3):281-288. [9] 周建良. 深水表层导管喷射钻进过程中钻井液排量优化研究[J]. 中国海上油气,2012,24(4):50-52. doi: 10.3969/j.issn.1673-1506.2012.04.010ZHOU Jianliang. Research on the optimization of delivery capacity during jetting drilling of surface conduct in deep water[J]. China Offshore Oil and Gas, 2012, 24(4):50-52. doi: 10.3969/j.issn.1673-1506.2012.04.010 [10] 郭元吉,药俊,郭庆,等. 深水表层钻井液密度与流变参数相关性研究[J]. 海洋石油,2011,31(1):77-81. doi: 10.3969/j.issn.1008-2336.2011.01.077GUO Yuanji, YAO Jun, GUO Qing, et al. Study on the correlation of deepwater surface drilling fluid density and rheological parameters[J]. Offshore Oil, 2011, 31(1):77-81. doi: 10.3969/j.issn.1008-2336.2011.01.077 [11] 柯珂,张辉,王磊. 琼东南深水钻井井筒天然气水合物抑制剂推荐浓度确定方法[J]. 科学技术与工程,2012,12(29):7485-7492. doi: 10.3969/j.issn.1671-1815.2012.29.001KE Ke, ZHANG Hui, WANG Lei. Calculation method of gas hydrate formation inhibitor concentration for Qiong Dongnan deepwatwer drilling[J]. Science Technology and Engineering, 2012, 12(29):7485-7492. doi: 10.3969/j.issn.1671-1815.2012.29.001 [12] 吴彬,向兴金,李自立,等. 深水表层动态压井钻井液增黏剂的研制[J]. 钻井液与完井液,2011,28(4):1-3,91. doi: 10.3969/j.issn.1001-5620.2011.04.001WU Bin, XIANG Xingjin, LI Zili, et al. Research on viscosifier used in dynamic kill drilling fluids for early stages of deepwater wells[J]. Drilling Fluid & Completion Fluid, 2011, 28(4):1-3,91. doi: 10.3969/j.issn.1001-5620.2011.04.001 [13] 任冠龙,张崇,董钊,等. 海上气井测试液控温性能调整方法[J]. 钻井液与完井液,2016,33(4):117-121.REN Guanlong, ZHANG Chong, DONG Zhao, et al. Temperature control capability of test fluid used in offshore operations[J]. Drilling Fluid & Completion Fluid, 2016, 33(4):117-121. [14] 任冠龙,孟文波,张崇,等. 深水气井测试中天然气水合物的抑制和调控方法[J]. 断块油气田,2018,25(1):107-110. doi: 10.6056/dkyqt201801023REN Guanlong, MENG Wenbo, ZHANG Chong, et al. Hydrate inhibition and control method for deep water gas well testing[J]. Fault-Block Oil & Gas Field, 2018, 25(1):107-110. doi: 10.6056/dkyqt201801023 [15] 任冠龙,张崇,董钊,等. 深水气井测试过程中水合物相态曲线的研究与应用[J]. 钻井液与完井液,2018,35(4):120-125. doi: 10.3969/j.issn.1001-5620.2018.04.022REN Guanlong, ZHANG Chong, DONG Zhao, et al. Study and application of phase curve of hydrates in deep water gas well testing[J]. Drilling Fluid & Completion Fluid, 2018, 35(4):120-125. doi: 10.3969/j.issn.1001-5620.2018.04.022 -