Low Friction Cement Slurry Cementing Technology in Ultra-long Horizontal Section of Tight Gas Reservoir
-
摘要: 长庆油田致密气藏超长水平段固井,存在裸眼段长、环空间隙小、流动摩阻压耗大和施工压力高,易发生漏失造成固井质量差和后期环空带压等一系列复杂问题,严重影响后续开采和单井产量。为此开发了低摩阻低密度水泥浆和低摩阻高强韧性水泥浆,来提高水泥浆的流动性,降低流动摩阻压耗、施工压力和漏失风险。低摩阻低密度水泥浆采用耐压性能优良的空心玻璃微珠做为主要减轻材料,提高体系的耐压性能,入井后保持较高的结构圆整度,有效降低摩阻压耗。低摩阻高强韧性水泥浆在常规高强韧性水泥浆的基础上,引入实心玻璃微珠和复合高效增强剂,在保证水泥石力学性能的基础上,提高了水泥浆的流动性能,降低了水泥浆的摩阻压耗。室内模拟实验表明,低摩阻低密度水泥浆较常规低密度水泥浆范宁摩阻系数由0.0593降低至0.0295,降低50.25%;低摩阻高强韧性水泥浆较常规高强韧性水泥浆摩阻系数由0.070降低至0.0414,降低40.86%。前期先导性试验应用表明,使用低摩阻水泥浆摩阻压耗降低明显,有效降低施工压力。采用低摩阻水泥浆并进行低摩阻高强韧性水泥浆分段梯度携砂设计,助力致密气藏5256 m超长水平段固井施工顺利完成,固井质量合格,为长庆致密气藏超长水平段固井提供有力的技术支撑。Abstract: Cementing of ultra-long horizontal section of Sulige Tight Gas Reservoir in Changqing Oilfield has long open-hole sections, small annulus gaps, high flow friction and pressure loss, high construction pressure, and easy leakage, resulting in poor cementing quality and later annular pressure. A series of complex issues have seriously affected subsequent mining and single well production. Therefore, low friction low density cement slurry and low friction high strength and toughness cement slurry are developed to improve the fluidity of cement slurry and reduce the flow friction pressure consumption, and reduce the construction pressure and the risk of leakage.Low-friction low-density cement slurry adopts hollow glass beads with good pressure resistance as the main reducing material to improve the pressure resistance of the system, and maintain a higher roundness of the structure after entering the well, effectively reducing the friction and pressure loss.Low-friction high-strength and toughness cement slurry is based on conventional cement slurry, introducing solid glass microspheres and composite high-efficiency reinforcing agents to improve the fluidity of the cement slurry and reduce friction pressure loss on the basis of ensuring the mechanical properties of the cement stone. The experimental results show that the Fanning friction coefficient of low-friction and pressure-resistant hollow glass microbead cement slurry is reduced from 0.0593 to 0.0295, which is 50.25% lower than that of conventional low-density cement slurry . The friction coefficient of low friction high strength toughness cement slurry is reduced from 0.07 to 0.0414, 40.86% lower than the conventional high strength toughness cement slurry. The preliminary pilot test shows that the low friction cement slurry can reduce the friction pressure and the construction pressure effectively. The adoption of low-friction cement slurry and the segmented gradient sand carrying design of low-friction high-strength and high-toughness cement slurry helped the cement construction of 5256 m ultra-long horizontal section in tight gas reservoir to be successfully completed, and the cementing quality was qualified, providing strong technical support for the ultra-long horizontal section in Changqing tight gas reservoir.
-
表 1 常规低密度水泥浆基本性能
实验
方案ρ/
g·cm−3稠度/
Bc游离液/
%流动度/
cm流变参数 范宁摩
阻系数n K/Pa·sn 1 1.32 15 0.3 18 0.47 0.92 0.0269 2 1.47 19 0.8 15 0.36 3.60 0.0593 注:实验方案1:制备水泥浆置于常压稠化仪上升温至80 ℃再养护20 min,进行性能评价;实验方案2:制备水泥浆置于增压稠化仪上升温升压至80 ℃、40 MPa再养护20 min,进行性能评价。 表 2 低摩阻水泥浆体系基础性能
配方 实验
方案ρ/
g·cm−3稠度/
Bc游离液/
%p/MPa 流动度/
cmn K/
Pa·sn范宁摩阻
系数24 h 48 h 1# 1 1.25 14 0.2 7.3 10.6 21.0 0.60 0.43 0.0287 2 1.26 14 0.2 7.8 11.2 20.5 0.61 0.42 0.0295 2# 1 1.90 18 0 33.6 41.5 18.0 0.89 0.21 0.0414 2 1.90 18 0 33.7 41.9 18.0 0.89 0.21 0.0414 表 3 低摩阻低密度水泥浆现场试验应用情况对比
井号 井深/
m垂深/
m水平段长/
mρ钻井液/
g·cm−3施工压力/
MPa低密度封
固段长/m常规密度封
固段长/m理论计算摩
阻压耗/MPa实际反推摩
阻压耗/MPaS28-*H1 5041 3229 1500 1.35 0-20.0-26 853 1800 9.97 10.72 S28-*H2 5045 3208 1310 1.35 0-23.0-28 795 1610 10.59 12.59 S28-**H1 4960 3173 1300 1.32 0-21.5-28 885 1880 10.12 10.91 S28-**H2 4736 3120 1336 1.32 0-23.5-29 815 1840 11.00 13.05 表 4 套管内流体流动摩阻压耗计算表
流体 ρ/(g·cm-3) L/m v/(m·s-1) d/m λ P/MPa 清水 1.01 5041 1.027 0.0996 0.04 1.08 注:P=$ \dfrac{\mathit{\lambda }\rho L{v}^{2}}{2d} $,λ为经验值0.04 表 5 环空流体流动摩阻压耗计算表
流体 ρ/
g·cm−3L/
mv/
(m·s−1)Δd/
mmf P/
MPa钻井液 1.35 1976 0.825 4.512 0.0177 1.42 前置液 1.01 412 0.825 4.512 0.0082 0.11 低摩阻低密度 1.26 853 0.825 4.512 0.0295 0.96 常规高强韧性 1.90 1800 0.791 4.680 0.07 6.40 表 6 低摩阻高强韧性水泥浆现场试验应用情况对比
井号 井深/
m垂深/
m水平段长/
mρ钻井液/
g·cm−3施工压
力/MPa低密度封
固段长/m常规密度封
固段长/m理论计算摩
阻压耗/MPa实际反推摩
阻压耗/MPaJ5*-*H1 4850 3021.50 1500 1.38 0-23.5-28 800 2298 9.07 10.96 J5*-*H2 4739 2957.00 1500 1.38 0-25.5-30 800 2107 11.76 13.90 J7*-*H2 4724 3183.80 1188 1.41 0-22.0-28 685 1730 7.98 9.73 J7*-*H1 4664 2924.00 1339 1.41 0-23.5-30 650 1650 10.15 11.88 S28-*H2 5380 3103.00 1940 1.40 0-24.0-30 805 2350 9.68 11.62 S28-*H1 5407 3092.10 1957 1.40 0-26.0-31 785 2340 13.05 14.55 表 7 低摩阻高强韧性水泥浆分段梯度携砂设计
流体 ρ/
g·cm-3六速 PV/
mPa·sYP/
PaZj φ3 φ6 φ100 φ200 φ300 φ600 完井钻井液 1.43 2 4 12.5 21.5 29.5 50 21 4.60 2.79a 低摩阻高强韧性 1.88 1 6 35.7 69.0 97.0 142 92 2.58 2.13a 低摩阻高强韧性 1.90 3 10 39.5 75.0 105.0 175 98 3.45 2.23a 低摩阻高强韧性 1.93 6 14 48.0 88.0 121.5 218 110 5.75 2.47a 注:Zj=$ \dfrac{{\rho }_{\mathrm{流}\mathrm{体}}}{{\rho }_{\mathrm{岩}\mathrm{屑}}} $×$ {PV}^{YP/PV} $;a=$ \dfrac{1}{{\rho }_{\mathrm{岩}\mathrm{屑}}} $ 表 8 低摩阻高强韧性水泥浆体系基本性能
ρ/
g·cm-3稠度/
Bc游离液/
%p/MPa t稠化/
min流动度/
cm流变参数 范宁摩阻
系数24 h 48 h n K/
Pa·sn1.88 16 0 32.9 40.5 405 20 0.91 0.17 0.0370 1.90 18 0 33.7 41.9 355 18 0.89 0.21 0.0414 1.93 20 0 34.9 43.4 315 17 0.85 0.32 0.0495 表 9 套管内流体流动摩阻压耗的计算表
流体 ρ/(g·cm−3) L/m v/(m·s−1) d/m λ P/MPa 清水 1.01 8525 1.078 0.0972 0.04 2.06 表 10 环空流体流动摩阻压耗计算表
水泥浆 ρ/
g·cm-3L/
mv/
m·s−1Δd/
mmf P/
MPa低摩阻低密度 1.26 1937 0.825 4.512 0.0295 2.18 低摩阻高强韧性 1.88 1350 0.825 4.512 0.0370 2.83 低摩阻高强韧性 1.90 3000 0.791 4.68 0.0412 6.27 低摩阻高强韧性 1.93 2228 0.791 4.68 0.0495 5.69 -
[1] 卢涛,张吉,李跃刚,等. 苏里格气田致密砂岩气藏水平井开发技术及展望[J]. 天然气工业,2013,33(8):38-43. doi: 10.3787/j.issn.1000-0976.2013.08.007LU Tao, ZHANG Ji, LI Yuegang, et al. Horizontal well development technology for tight sandstone gas reservoirs in the Sulige gas field, ordos basin[J]. Natural Gas Industry, 2013, 33(8):38-43. doi: 10.3787/j.issn.1000-0976.2013.08.007 [2] 陈华. 苏里格气田水平井斜井段防漏防塌钻井液技术[J]. 钻井液与完井液,2018,35(1):66-70. doi: 10.3969/j.issn.1001-5620.2018.01.013CHEN Hua. Drilling fluid technology for mud loss control and borehole wall stabilization in the slant section of horizontal wells in Sulige gas field[J]. Drilling Fluid & Completion Fluid, 2018, 35(1):66-70. doi: 10.3969/j.issn.1001-5620.2018.01.013 [3] 史配铭,薛让平,王学枫,等. 苏里格气田致密气藏水平井优快钻井技术[J]. 石油钻探技术,2020,48(5):27-33. doi: 10.11911/syztjs.2020083SHI Peiming, XUE Rangping, WANG Xuefeng, et al. Optimized fast drilling technology for horizontal wells in the tight gas reservoirs in Sulige gas field[J]. Petroleum Drilling Techniques, 2020, 48(5):27-33. doi: 10.11911/syztjs.2020083 [4] 蒙华军,张矿生,谢文敏,等. 长庆致密气藏4000m水平段钻井技术实践与认识[J]. 钻采工艺,2021,44(4):119-122. doi: 10.3969/J.ISSN.1006-768X.2021.04.27MENG Huajun, ZHANG Kuangsheng, XIE Wenmin, et al. Practice and recognition of drilling technology in 4 000 mhorizontal section of tight gas reservoir in Changqing[J]. Drilling & Production Technology, 2021, 44(4):119-122. doi: 10.3969/J.ISSN.1006-768X.2021.04.27 [5] 刘崇建, 黄柏宗, 徐同台, 等. 油气井注水泥理论与应用[M]. 北京: 石油工业出版社, 2001.LIU Chongjian, HUANG Baizong, XU Tongtai, et al. Cement Injection Theory and Application in Oil and Gas Wells[M]. Beijing: Petroleum Industry Press, 2001. [6] 冯青豪. 注水泥流动摩阻的准确计算方法研究与现场应用[D]. 成都: 西南石油大学, 2016: 22-39.FENG Qinhao. Research and field application of accurate calculation method of cement flow friction[D]. Chengdu: Southwest Petroleum University, 2016: 22-39. [7] 冉艳霞,叶 斌,程子睿,等. 致密岩石介质中气体滑脱效应的研究进展[J]. 地质力学学报,2018,24(4):498-504504. doi: 10.12090/j.issn.1006-6616.2018.24.04.052RAN Yanxia, YE Bin, CHENG Zirui, et al. Research progress of gas slippage effect in tight rock media[J]. Chinese Journal of Geomechanics, 2018, 24(4):498-504504. doi: 10.12090/j.issn.1006-6616.2018.24.04.052 [8] 闵江本,向蓉,陈博. 长庆油田小套管二次固井工艺技术研究与应用[J]. 钻探工程,2021,48(8):26-32.MIN Jiangben, XIANG Rong, CHENG Bo. Research and application of secondary cementing technology for slim casing in Changqing Oilfield[J]. Drilling Engineering, 2021, 48(8):26-32. [9] 闵江本,马学如,张战臣. 复合空心玻璃微珠水泥浆体系在长庆定吴区块的应用[J]. 石油地质与工程,2020,34(4):113-117. doi: 10.3969/j.issn.1673-8217.2020.06.023MIN Jiangben, MA Xueru, ZHANG Zhanchen. Application of composite hollow glass microsphere cement slurry system in Dingwu block of Changqing[J]. Petroleum Geology and Engineering, 2020, 34(4):113-117. doi: 10.3969/j.issn.1673-8217.2020.06.023 [10] 郑少军,王凯伦,刘思雨,等. 基于紧密堆积理论的低密度固井水泥浆设计[J]. 钻探工程,2021,48(3):94-100.ZhENG Shaojun, WANG Kailun, LIU Siyu, et al. Design of low density cementing slurry based on close packing theory[J]. Drilling Engineering, 2021, 48(3):94-100. -