留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

耐200 ℃固井水泥用悬浮剂的制备与性能表征

罗敏 黄盛 何旭晟 李早元 程小伟

罗敏,黄盛,何旭晟,等. 耐200 ℃固井水泥用悬浮剂的制备与性能表征[J]. 钻井液与完井液,2022,39(4):472-480 doi: 10.12358/j.issn.1001-5620.2022.04.012
引用本文: 罗敏,黄盛,何旭晟,等. 耐200 ℃固井水泥用悬浮剂的制备与性能表征[J]. 钻井液与完井液,2022,39(4):472-480 doi: 10.12358/j.issn.1001-5620.2022.04.012
LUO Min, HUANG Sheng, HE Xusheng, et al.The preparation and performance characterization of a cement suspending agent resistant to 200 ℃[J]. Drilling Fluid & Completion Fluid,2022, 39(4):472-480 doi: 10.12358/j.issn.1001-5620.2022.04.012
Citation: LUO Min, HUANG Sheng, HE Xusheng, et al.The preparation and performance characterization of a cement suspending agent resistant to 200 ℃[J]. Drilling Fluid & Completion Fluid,2022, 39(4):472-480 doi: 10.12358/j.issn.1001-5620.2022.04.012

耐200 ℃固井水泥用悬浮剂的制备与性能表征

doi: 10.12358/j.issn.1001-5620.2022.04.012
基金项目: 四川省区域创新合作项目“页岩气水平井用原位增韧水泥研究与应用”(2021YFQ0045)
详细信息
    作者简介:

    罗敏,在读硕士研究生,1997年生,现从事油气井固井材料及外加剂方面的研究工作。E-mail:202021001067@ stu.swpu.edu.cn

    通讯作者:

    程小伟,E-mail:chengxw@swpu.edu.cn

  • 中图分类号: TE256.6

The Preparation and Performance Characterization of a Cement Suspending Agent Resistant to 200 ℃

  • 摘要: 针对深井、超深井固井中,水泥浆在高温下液相黏滞力下降而发生固相沉降失稳甚至分层的问题,设计合成了一种耐200 ℃的高温悬浮剂GX,该剂是以丙烯酰胺(AM)、对苯乙烯磺酸钠(SSS)、N, N-二乙基丙烯酰胺(DEAA)为单体,过硫酸铵(APS)为引发剂,采用自由基溶液聚合法制得的三元共聚物。采用GPC、FTIR、1H-NMR和SEM对高温悬浮剂的分子量、结构和形貌进行了表征,结果表明,3种单体均参与聚合反应,成功合成了AM/SSS/DEAA三元共聚物。TG、FTIR和SEM分析表明,高温悬浮剂的耐热性能优异,最高可达318.6 ℃。高温沉降稳定性评价结果表明,高温悬浮剂的适用温度可达200 ℃,水泥浆中加入悬浮剂GX后,200 ℃下密度差小于0.02 g/cm3,能提高水泥浆的沉降稳定性,且高温悬浮剂的加入对水泥浆的流变性、稠化时间和水泥石的强度无负面影响。

     

  • 图  1  高温悬浮剂的凝胶色谱图

    图  2  高温悬浮剂的红外光谱图

    图  3  高温悬浮剂的核磁共振氢谱图

    图  4  高温悬浮剂的TG曲线

    图  5  不同温度下放置5 h后高温悬浮剂的红外光谱图

    图  6  不同温度下放置5 h后高温悬浮剂的SEM图

    图  7  1%GX水溶液在不同温度下的紫外分光光度曲线

    图  8  不同质量分数GX溶液的荧光光谱图

    图  9  不同质量分数GX溶液的性能变化

    图  10  水泥浆在150 ℃时的稠化曲线

    图  11  水泥浆在200 ℃时的稠化曲线

    图  12  不同温度下水泥石的强度变化

    图  13  高温悬浮剂的作用机理示意图

    表  1  水泥浆体系沉降稳定性评价

    T/℃GX/%ρ/(g·cm−3ρ/(g·cm−3ρ/(g·cm−3
    150 0.1 1.875 1.896 0.021
    165 0.1 1.867 1.882 0.015
    180 0.1 1.887 1.900 0.013
    200 0.1 1.883 1.891 0.008
    下载: 导出CSV

    表  2  不同温度下水泥浆流变性能和流变参数拟合结果

    GX/%T/℃φ3/φ6/φ100/φ200/φ300/φ600nK/Pa·snR2
    0 25 4/6/77/150/222/- 0.964 0.278 0.998
    0.1 25 4/6/72/139/207/- 0.961 0.263 0.998
    150 3/4/54/98/139/257 0.861 0.331 0.997
    200 4/6/80/150/214/- 0.896 0.410 0.999
    下载: 导出CSV
  • [1] 李阳,薛兆杰,程喆,等. 中国深层油气勘探开发进展与发展方向[J]. 中国石油勘探,2020,25(1):45-57. doi: 10.3969/j.issn.1672-7703.2020.01.005

    LI Yang, XUE Zhaojie, CHENG Zhe, et al. Progress and development directions of deep oil and gas exploration and development in China[J]. China Petroleum Exploration, 2020, 25(1):45-57. doi: 10.3969/j.issn.1672-7703.2020.01.005
    [2] 国土资源部油气资源战略研究中心. 全国油气资源动态评价[M]. 北京: 中国大地出版社, 2017.

    Strategic Research Center of Oil and Gas Resources, MINISTRY of Land and Resources. National oil and gas resource dynamic evaluation[M]. Beijing: China Land Press, 2017.
    [3] 张焕芝,邱茂鑫,杜文祥,等. 新冠肺炎疫情对中国油气勘探开发的影响及启示[J]. 世界石油工业,2020,27(5):17-22.

    ZHANG Huanzhi, QIU Maoxin, DU Wenxiang, et al. Implications of COVID-19 epidemic on China’s oil and gas exploration and development[J]. World Petroleum Industry, 2020, 27(5):17-22.
    [4] 李鹭光. 中国天然气工业发展回顾与前景展望[J]. 天然气工业,2021,41(8):1-11. doi: 10.3787/j.issn.1000-0976.2021.08.001

    LI Luguang. Development of natural gas industry in China: Review and prospect[J]. Natural Gas Industry, 2021, 41(8):1-11. doi: 10.3787/j.issn.1000-0976.2021.08.001
    [5] 王志伟. 中石油固井技术进展研究[J]. 西部探矿工程,2021,33(6):34-35,38. doi: 10.3969/j.issn.1004-5716.2021.06.011

    WANG Zhiwei. Research on cementing technology progress of CNPC[J]. West-China Exploration Engineering, 2021, 33(6):34-35,38. doi: 10.3969/j.issn.1004-5716.2021.06.011
    [6] 管志川, 陈庭根. 钻井工程理论与技术[M]. 第2版. 东营: 中国石油大学出版社, 2017.

    GUAN Zhichuan, CHEN Tinggen. Drilling engineering theory and technology[M]. 2nd edition. Dongying: China University of Petroleum Press, 2017.
    [7] 许明标, 刘卫红, 文守成. 现代储层保护技术[M]. 武汉: 中国地质大学出版社, 2016.

    XU Mingbiao, LIU Weihong, WEN Shoucheng. Modern reservoir protection techniques[M]. Wuhan: China University of Geosciences Press, 2016.
    [8] 陈平. 钻井与完井技术[M]. 第2版. 北京: 石油工业出版社, 2011.

    CHEN Ping. Drilling and completion technology [M]. 2nd edition. Beijing: Petroleum Industry Press, 2011.
    [9] 赵蕴华,苑朋彬,李维波. 深层钻井技术专利市场研究[J]. 全球科技经济瞭望,2019,34(4):64-70.

    ZHAO Yunhua, YUAN Pengbin, LI Weibo. Patent market research on deep drilling technology[J]. Global Science, Technology and Economy Outlook, 2019, 34(4):64-70.
    [10] 汪海阁,黄洪春,毕文欣,等. 深井超深井油气钻井技术进展与展望[J]. 天然气工业,2021,41(8):163-177. doi: 10.3787/j.issn.1000-0976.2021.08.015

    WANG Haige, HUANG Hongchun, BI Wenxin, et al. Deep and ultra-deep oil/gas well drilling technologies: progress and prospect[J]. Natural Gas Industry, 2021, 41(8):163-177. doi: 10.3787/j.issn.1000-0976.2021.08.015
    [11] 任宪忠. 超深钻井技术现状与发展趋势论述[J]. 中国石油和化工标准与质量,2019,39(2):148,150. doi: 10.3969/j.issn.1673-4076.2019.02.072

    REN Xianzhong. Discussion on current situation and development trend of ultra-deep drilling technology[J]. China Petroleum and Chemical Standard and Quality, 2019, 39(2):148,150. doi: 10.3969/j.issn.1673-4076.2019.02.072
    [12] 伍贤柱,万夫磊,陈作,等. 四川盆地深层碳酸盐岩钻完井技术实践与展望[J]. 天然气工业,2020,40(2):97-105. doi: 10.3787/j.issn.1000-0976.2020.02.011

    WU Xianzhu, WAN Fulei, CHEN Zuo, et al. Drilling and completion technologies for deep carbonate rocks in the Sichuan Basin: Practices and prospects[J]. Natural Gas Industry, 2020, 40(2):97-105. doi: 10.3787/j.issn.1000-0976.2020.02.011
    [13] 郭锦棠,董美美,于永金,等. 温敏增稠固井水泥外加剂的合成与性能研究[J]. 天津大学学报(自然科学与工程技术版),2016,49(6):597-602.

    GUO Jintang, DONG Meimei, YU Yongjin, et al. Synthesis and property of thermo-thickening oil well cement additives[J]. Journal of Tianjin University, 2016, 49(6):597-602.
    [14] 王涛,申峰,马振锋,等. 一种评价水泥浆沉降稳定性的新方法—微压力波动测试水泥浆滤失—沉降耦合作用[J]. 天然气工业,2019,39(8):96-103.

    WANG Tao, SHEN Feng, MA Zhenfeng, et al. A new method for evaluating settlement stability of cement slurry: micro-pressure fluctuation tests for cement slurry filtration–settlement coupling[J]. Natural Gas Industry, 2019, 39(8):96-103.
    [15] 于永金,刘硕琼,袁进平,等. 高温条件下水泥浆沉降稳定性的评价方法[J]. 钻井液与完井液,2011,28(6):52-54. doi: 10.3969/j.issn.1001-5620.2011.06.017

    YU Yongjin, LIU Shuoqiong, YUAN Jinping, et al. Evaluation method for settling stability of slurry under high temperature condition[J]. Drilling Fluid & Completion Fluid, 2011, 28(6):52-54. doi: 10.3969/j.issn.1001-5620.2011.06.017
    [16] 刘湘华. 油井水泥浆高温悬浮稳定剂的开发及性能研究[J]. 钻井液与完井液,2019,36(5):605-609. doi: 10.3969/j.issn.1001-5620.2019.05.014

    LIU Xianghua. Development of and study on a high temperature suspension stabilizer for oil well cement slurries[J]. Drilling Fluid & Completion Fluid, 2019, 36(5):605-609. doi: 10.3969/j.issn.1001-5620.2019.05.014
    [17] 卢甲晗,郭娟,梁海祥. 一种固井聚合物类降失水剂用交联剂的研制与应用[J]. 河南化工,2021,38(8):18-21. doi: 10.14173/j.cnki.hnhg.2021.08.005

    LU Jiahan, GUO Juan, LIANG Haixiang. Development and application of a cross-linking agent for cementing polymer water loss reducer[J]. Henan Chemical Industry, 2021, 38(8):18-21. doi: 10.14173/j.cnki.hnhg.2021.08.005
    [18] 刘学鹏,张明昌,方春飞. 耐高温油井水泥降失水剂的合成和性能[J]. 钻井液与完井液,2015,32(6):61-64.

    LIU Xuepeng, ZHANG Mingchang, FANG Chunfei. Synthesis and properties of high temperature resistant water loss reducer for oil well cement[J]. Drilling Fluid & Completion Fluid, 2015, 32(6):61-64.
    [19] YAN S, WANG Y, WANG F, et al. Synthesis and mechanism study of temperature-resistant fluid loss reducer for oil well cement [J]. Advances in Cement Research. 2017, 29(5): 183-193.
    [20] 王成文,王桓,薛毓铖,等. 高密度水泥浆高温沉降稳定调控热增黏聚合物研制与性能[J]. 石油学报,2020,41(11):1416-1424. doi: 10.7623/syxb202011011

    WANG Chengwen, WANG Huan, XUE Yucheng, et al. Development and performance of thermo-viscosifying polymer for high temperature sedimentation control of high density cement slurry[J]. Acta Petrolei Sinica, 2020, 41(11):1416-1424. doi: 10.7623/syxb202011011
    [21] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 油井水泥试验方法: GB/T 19139—2012[S]. 2012-12-31.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of China. Testing of well cements: GB/T 19139—2012[S]. 2012-12-31.
    [22] 中海油田服务服务股份有限公司, 国家能源局. 油井水泥浆性能要求: SY/T 6544-2017 [S]. 2017-03-28.

    China Oilfield Services Co. , Ltd. , National Energy Administration. Performance requirements for oil well cement slurries: SY/T 6544—2017[S]. 2017-03-28.
    [23] HESSE, MANFRED, MEIER, et al. Spectroscopic methods in organic chemistry[M]. Stuttgart: Georg Thieme Verlag, 2008.
    [24] 孟令芝, 龚淑玲, 何永柄. 有机波谱分析[M]. 武汉: 武汉大学出版社, 2003.

    MENG Lingzhi, GONG Shuling, HE Yongbing. Organic spectral analysis[M]. Wuhan: Wuhan University Press, 2003.
    [25] LIAN L L, XU S Y, YUAN H Y, et al. The anion binding affinity determines the strength of anion specificities of thermosensitive polymers[J]. Chinese Journal of Polymer Science, 2021, 39(11):1351-1356. doi: 10.1007/s10118-021-2633-9
    [26] 周艳,冯真雅,奚志林,等. 芘荧光探针光法测定聚氧化乙烯与SDS的作用[J]. 化学研究与应用,2018,30(2):237-242. doi: 10.3969/j.issn.1004-1656.2018.02.011

    ZHOU Yan, FENG Zhenya, XI Zhilin, et al. Determination of PEO and sodium SDS by pyrene fluorescence probe spectrometry[J]. Chemical Research and Application, 2018, 30(2):237-242. doi: 10.3969/j.issn.1004-1656.2018.02.011
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  662
  • HTML全文浏览量:  223
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-16
  • 修回日期:  2022-03-01
  • 刊出日期:  2022-07-30

目录

    /

    返回文章
    返回