留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温高压下石英砂粒径对油井水泥石性能的影响

张国光 王春雨 代丹 姚晓 陈为行 耿晨梓 胡方

张国光,王春雨,代丹,等. 高温高压下石英砂粒径对油井水泥石性能的影响[J]. 钻井液与完井液,2022,39(4):466-471 doi: 10.12358/j.issn.1001-5620.2022.04.011
引用本文: 张国光,王春雨,代丹,等. 高温高压下石英砂粒径对油井水泥石性能的影响[J]. 钻井液与完井液,2022,39(4):466-471 doi: 10.12358/j.issn.1001-5620.2022.04.011
ZHANG Guoguang, WANG Chunyu, DAI Dan, et al.The effects of particle size of silica flour on the performance of oil well cement at high temperature and high pressuree[J]. Drilling Fluid & Completion Fluid,2022, 39(4):466-471 doi: 10.12358/j.issn.1001-5620.2022.04.011
Citation: ZHANG Guoguang, WANG Chunyu, DAI Dan, et al.The effects of particle size of silica flour on the performance of oil well cement at high temperature and high pressuree[J]. Drilling Fluid & Completion Fluid,2022, 39(4):466-471 doi: 10.12358/j.issn.1001-5620.2022.04.011

高温高压下石英砂粒径对油井水泥石性能的影响

doi: 10.12358/j.issn.1001-5620.2022.04.011
基金项目: 中海油田服务有限公司项目“水泥石热衰退规律研究”(G2017A-0521G523)
详细信息
    作者简介:

    张国光,工程师,1983年生,毕业于中国石油大学工商管理专业,现在从事固井施工及技术管理工作。电话 15830540582;E-mail:zhanggg6@cosl.com.cn

    通讯作者:

    姚晓,E-mail:yaoxiao@njtech.edu.cn

  • 中图分类号: TE256.6

The Effects of Particle Size of Silica Flour on the Performance of Oil Well Cement at High Temperature and High Pressure

  • 摘要: 在油井水泥中掺入石英砂是防止水泥石在高温高压下强度衰退的常用手段,通过在G级油井水泥中内掺35%不同粒径的石英砂,并在高温高压(240 ℃×21 MPa)下养护至180 d,来探究石英砂粒径对油井水泥石高温力学性能的影响。实验测试了加入不同粒径石英砂的水泥石的抗压强度和渗透率,分析了水泥石的水化产物和孔隙结构。结果表明,石英砂能够防止水泥石在高温下强度衰退,但是水泥石的抗压强度随石英砂粒径的减小而降低;掺入石英砂可降低水泥石的渗透率,石英砂的粒径越小,水泥石的渗透率越低。掺入较大粒径石英砂的水泥石中,生成的针状硬硅钙石较长,是水泥石具有较高抗压强度的主要原因。以300目35%加砂水泥为基础,复配其他外加剂形成高温高压水泥浆配方,在南海DX-11-2井应用,现场固井施工顺利,24 h时CBL和VDL测井显示固井质量优良。

     

  • 图  1  不同实验材料的粒径分布

    图  2  S800石英砂的XRD图谱

    图  3  净浆水泥石及加砂35%水泥石经240 ℃×21 MPa养护不同时间后的抗压强度

    图  4  净浆水泥石及加砂35%水泥石经  240 ℃×21 MPa养护后的渗透率

    图  5  净浆水泥石及加砂35%水泥石经   240 ℃×21 MPa养护后的XRD图

    图  6  净浆水泥石及加砂35%水泥石经240 ℃×21 MPa养护后的孔隙结构分布

    图  7  内掺35%不同粒径石英砂的水泥石经 240 ℃×21 MPa养护后的总孔隙率

    图  8  内掺35%180目和800目石英砂的水泥石 经240 ℃×21 MPa养护后的微观形貌

    表  1  实验材料的化学成分和油井水泥矿物组成

    氧化物化学成分组成/%油井水泥
    物相
    矿物组成/%
    GZBS180S300S800Rietveld法
    SiO222.2998.3197.4898.17C3S60.7
    Al2O34.250.571.150.91C2S16.6
    CaO61.700.030.180.06C3A2.3
    MgO1.630.010.140.06C4AF17.2
    SO31.930.03CaSO42.7
    TiO20.310.040.040.03
    Fe2O35.680.030.210.09
    K2O0.380.140.250.18
    Na2O0.150.010.030.04
    MnO0.28
    LOI0.480.120.220.18
    下载: 导出CSV

    表  2  净浆及加砂35%水泥浆的基本性能

    水泥浆ρ/(g·cm−3流动度/cm
    G1.9019.2
    GS1801.8522.1
    GS3001.8421.3
    GS8001.8417.7
    下载: 导出CSV
  • [1] 苏义脑,路保平,刘岩生,等. 中国陆上深井超深井钻完井技术现状及攻关建议[J]. 石油钻采工艺,2020,42(5):527-542. doi: 10.13639/j.odpt.2020.05.001

    SU Yinao, LU Baoping, LIU Yansheng, et al. Status and research suggestions on the drilling and completion technologies for onshore deep and ultra deep wells in China[J]. Oil Drilling & Production Technology, 2020, 42(5):527-542. doi: 10.13639/j.odpt.2020.05.001
    [2] 徐新丽. 累积工况下常规加砂水泥石的耐温性[J]. 钻井液与完井液,2021,38(6):754-759.

    XU Xinli. High temperature resistance of conventional set sand cement under cumulative working conditions[J]. Drilling Fluid & Completion Fluid, 2021, 38(6):754-759.
    [3] YANG T, WU Q, ZHU H, et al. Geopolymer with improved thermal stability by incorporating high-magnesium nickel slag[J]. Construction and Building Materials, 2017, 155:475-484. doi: 10.1016/j.conbuildmat.2017.08.081
    [4] KRAKOWIAK K J, THOMAS J J, MUSSO S, et al. Nano-chemo-mechanical signature of conventional oil-well cement systems: Effects of elevated temperature and curing time[J]. Cement and Concrete Research, 2015, 67:103-121. doi: 10.1016/j.cemconres.2014.08.008
    [5] NELSON E B, GUILLOT D. Well cementing [M]. Second ed. , Schlumberger, 2006.
    [6] DE SENA COSTA B L, DE SOUZA G G, DE OLIVEIRA FREITAS J C, et al. Silica content influence on cement compressive strength in wells subjected to steam injection[J]. Journal of Petroleum Science and Engineering, 2017, 158:626-633. doi: 10.1016/j.petrol.2017.09.006
    [7] GE Z, YAO X, WANG X, et al. Thermal performance and microstructure of oil well cement paste containing subsphaeroidal konilite flour in HTHP conditions[J]. Construction and Building Materials, 2018, 172:787-794. doi: 10.1016/j.conbuildmat.2018.03.268
    [8] PERNITES R B, SANTRA A K. Portland cement solutions for ultra-high temperature wellbore applications[J]. Cement and Concrete Composites, 2016, 72:89-103. doi: 10.1016/j.cemconcomp.2016.05.018
    [9] OMOSEBI O, MAHESHWARI H, AHMED R, et al. Investigating temperature effect on degradation of well cement in HPHT carbonic acid environment[J]. Journal of Natural Gas Science and Engineering, 2015, 26:1344-1362. doi: 10.1016/j.jngse.2015.08.018
    [10] Recommended practice for testing well cements [S]. API RP 10B-2, 2013.
    [11] YANAGISAWA K, HU X, ONDA A, et al. Hydration of β-dicalcium silicate at high temperatures under hydrothermal conditions[J]. Cement and Concrete Research, 2006, 36(5):810-816. doi: 10.1016/j.cemconres.2005.12.009
    [12] PANG X, QIN J, SUN L, et al. Long-term strength retrogression of silica-enriched oil well cement: A comprehensive multi-approach analysis[J]. Cement and Concrete Research, 2021, 144:106424. doi: 10.1016/j.cemconres.2021.106424
    [13] HUA S, WANG K, YAO X. Developing high performance phosphogypsum-based cementitious materials for oil-well cementing through a step-by-step optimization method[J]. Cement and Concrete Composites, 2016, 72:299-308. doi: 10.1016/j.cemconcomp.2016.05.017
    [14] 耿晨梓,姚晓,代丹,等. SiO2晶态物性对高温水泥石力学性能的影响[J]. 钻井液与完井液,2020,37(6):777-783.

    GENG Chenzi, YAO Xiao, DAI Dan, et al. Effects of physical properties of SiO2 crystalline state on mechanical properties of high temperature set cement[J]. Drilling Fluid & Completion Fluid, 2020, 37(6):777-783.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  628
  • HTML全文浏览量:  241
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-21
  • 修回日期:  2022-03-31
  • 刊出日期:  2022-07-30

目录

    /

    返回文章
    返回