留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型非磺化环保低摩阻钻井液

王伟吉 高伟 范胜 宣扬 董晓强

王伟吉,高伟,范胜,等. 新型非磺化环保低摩阻钻井液[J]. 钻井液与完井液,2022,39(4):459-465 doi: 10.12358/j.issn.1001-5620.2022.04.010
引用本文: 王伟吉,高伟,范胜,等. 新型非磺化环保低摩阻钻井液[J]. 钻井液与完井液,2022,39(4):459-465 doi: 10.12358/j.issn.1001-5620.2022.04.010
WANG Weiji, GAO Wei, FAN Sheng, et al.The development and application of a new environmentally friendly low friction non-sulfonate drilling fluid[J]. Drilling Fluid & Completion Fluid,2022, 39(4):459-465 doi: 10.12358/j.issn.1001-5620.2022.04.010
Citation: WANG Weiji, GAO Wei, FAN Sheng, et al.The development and application of a new environmentally friendly low friction non-sulfonate drilling fluid[J]. Drilling Fluid & Completion Fluid,2022, 39(4):459-465 doi: 10.12358/j.issn.1001-5620.2022.04.010

新型非磺化环保低摩阻钻井液

doi: 10.12358/j.issn.1001-5620.2022.04.010
基金项目: 中国石化科技部项目“特深层安全高效钻井关键技术”(P21081-2)
详细信息
    作者简介:

    王伟吉,高级工程师,1987年生,2017年获中国石油大学(华东)油气井工程专业博士学位,主要从事钻井液技术研究工作。电话 (010)56606423;E-mail:wangwj.sripe@sinopec.com

  • 中图分类号: TE254.3

The Development and Application of a New Environmentally Friendly Low Friction Non-Sulfonate Drilling Fluid

  • 摘要: 深井、超深井钻探普遍采用耐温性较好的聚磺钻井液,其中磺化褐煤等磺化材料具有生物毒性、可降解性差,导致聚磺钻井液处理难度大、成本高。推荐了一套适用性强的钻井液环保性能评价标准,测试了聚磺钻井液及其主要处理剂的环保性能。以抗高温环保降滤失剂、流型调节剂代替传统磺化材料;以树枝状聚合物封堵抑制剂、纳微米封堵剂等代替磺化沥青、乳化沥青;以环保润滑剂替代原油,研发了一种新型非磺化环保低摩阻钻井液,并在塔河TK4120井进行了试验应用。结果表明,现场聚磺钻井液样本呈现中等毒性、较难生物降解、部分重金属含量超标,主要是磺化材料及原油生物降解性差和具有毒性所导致。非磺化环保低摩阻钻井液具有较强的抑制、封堵防塌及润滑性能,无毒,易生物降解。现场应用表明,该体系性能稳定,具有较强的抗温性,防塌能力强,润滑性能好,易塌地层平均井径扩大率仅为4.39%,4209 m长裸眼电测、下套管一次成功,取得了较好的应用效果。

     

  • 图  1  不同钻井液体系的API滤失泥饼

    图  2  不同钻井液体系的水化膨胀性

    图  3  志留系泥岩扫描电镜图

    图  4  封堵剂粒径分布曲线

    图  5  不同钻井液体系的润滑性能

    图  6  TK4120井的二开井径曲线

    表  1  钻井液及其处理剂的环保性能检测推荐指标

    环保性能环保性能检测参数环保性能要求主要参考标准
    生物毒性 EC50/(mg·L−1) ≥30 000 Q SY/TZ 0111—2004
    生物降解性 化学需氧量(CODCr)/(mg·L−1) <50 SY/T 6787—2010
    BOD5/CODCr/% ≥10 SY/T 6787—2010
    Q SY/TZ 0111—2004
    化学毒性 总汞/(mg·kg−1) ≤15 Q SY/TZ 0111—2004
    总镉/(mg·kg−1) ≤20 Q SY/TZ 0111—2004
    总铬/(mg·kg−1) ≤13 DB 65/T3997—2017
    总铅/(mg·kg−1) ≤600 DB 65/T3997—2017
    总砷/(mg·kg−1) ≤75 Q SY/TZ 0111—2004
    下载: 导出CSV

    表  2  生物毒性及生物可降解性分级参考标准

    生物毒性EC50/(mg·L−1)<11~100100~10001000~10000>10000>30000
    毒性分级剧毒高毒中等毒性微毒无毒排放限制标准
    生物降
    解性
    BOD5/CODCr/%≥2515~255~15<5
    降解性分级容易较易较难
    下载: 导出CSV

    表  3  5个现场聚磺钻井液样品的环保性能

    样品EC50/
    mg·L−1
    化学毒性/(mg·kg−1)BOD5/CODCr/
    %
    总汞总镉总铬总铅总砷
    1#543.42.08466.4803.4465.454.69.15
    2#487.23.45621.5676.5889.339.97.24
    3#865.61.33484.4908.4901.2101.56.64
    4#503.51.97439.5811.5622.455.39.02
    5#811.23.65500.3774.9582.479.28.39
    下载: 导出CSV

    表  4  现场聚磺钻井液体系主要处理剂的环保性能

    处理剂BOD5/CODCr/%EC50/mg·L−1
    SMC 4.23 6210.1
    SMP-2 3.12 5548.6
    SPNH 2.97 5846.8
    磺化沥青 2.58 789.8
    轻质原油 1.91 854.9
    XC 26.21 1.98×106
    PAC-LV 16.45 1.08×106
    LV-CMC 19.56 1.32×106
    KPAM 17.22 2.94×104
    改性淀粉类降滤失剂 20.23 2.58×104
    下载: 导出CSV

    表  5  不同钻井液体系的流变滤失性能(160 ℃、16 h)

    钻井液ρ/
    g·cm−3
    PV/
    mPa·s
    YP/
    Pa
    Gel/
    Pa/Pa
    FLAPI/
    mL
    FLHTHP/
    mL
    聚磺钻井液 1.8 34 16 4.0/15.0 4.8 12.4
    聚磺混油钻井液 1.8 36 18 3.0/16.5 4.2 11.8
    非磺化环保低摩阻体系 1.8 27 12 2.0/13.0 2.0 8.2
      注:钻井液基础配方0#:(2%~4%)膨润土+ (0.1%~0.2%)烧碱 + (0.2%~0.5%)纯碱 + (1%~2%)PAC-LV +(2%~3%)SMP-2 +(1%~2%)SPNH +(2%~4%)FT342+(1%~2%)超细碳酸钙(2500~3000目) + (5%~7%)KCl+重晶石;聚磺钻井液配方:0#+(2%~4%)液体润滑剂; 聚磺混油钻井液配方:0#+( 2%~4%)原油
    下载: 导出CSV

    表  6  封堵剂配方及粒径分布

    配方封堵剂粒径分布/μmD90/μm
    6#2%超细CaCO3(2500~3000目)1~9576.72
    7#6#+1%SMDP-2+1%SMNP-10.5~2010.25
    8#2%超细CaCO3(1500~2500目)2~240128.43
    9#8#+1%SMDP-2+1%SMNP-15~260132.22
    下载: 导出CSV

    表  7  非磺化环保低摩阻钻井液的环保性

    生物毒性生物可降解性化学毒性/(mg·kg−1)
    EC50/(mg·L−1)BOD5/CODCr/%总汞总镉总铬总铅总砷
    24 300 20.12 0.43 15.75 11.24 212.13 27.45
    下载: 导出CSV
  • [1] 鲁雪松,赵孟军,刘可禹,等. 库车前陆盆地深层高效致密砂岩气藏形成条件与机理[J]. 石油学报,2018,39(4):365-378. doi: 10.7623/syxb201804001

    LU Xuesong, ZHAO Mengjun, LIU Keyu, et al. Forming condition and mechanism of highly effective deep tight sandstone gas reservoir in Kuqa foreland basin[J]. Acta Petrolei Sinica, 2018, 39(4):365-378. doi: 10.7623/syxb201804001
    [2] 袁国栋,王鸿远,陈宗琦,等. 塔里木盆地满深1井超深井钻井关键技术[J]. 石油钻探技术,2020,48(4):21-27. doi: 10.11911/syztjs.2020067

    YUAN Guodong, WANG Hongyuan, CHEN Zongqi, et al. Key drilling technologies for the ultra-deep well manshen 1 in the Tarim basin[J]. Petroleum Drilling Techniques, 2020, 48(4):21-27. doi: 10.11911/syztjs.2020067
    [3] 宣扬,刘珂,郭科佑,等. 顺北超深水平井环保耐温低摩阻钻井液技术[J]. 特种油气藏,2020,27(3):163-168. doi: 10.3969/j.issn.1006-6535.2020.03.027

    XUAN Yang, LIU Ke, GUO Keyou, et al. Environmental anti-temperature low friction drilling fluid technology of ultra-deep horizontal well in Shunbei oil & gas field[J]. Special Oil & Gas Reservoirs, 2020, 27(3):163-168. doi: 10.3969/j.issn.1006-6535.2020.03.027
    [4] 钱晓琳,柴龙,宣扬,等. SMO-FREE钻井液在塔河油田TP154XCH井的应用[J]. 断块油气田,2018,25(4):525-528.

    QIAN Xiaolin, CHAI Long, XUAN Yang, et al. Field application of SMO-FREE drilling fluid in well TP154XCH of Tahe oilfield[J]. Fault-Block Oil & Gas Field, 2018, 25(4):525-528.
    [5] 张淑侠,裴婷,原敏,等. 废弃钻井液分类处理及其效能分析[J]. 应用化工,2021,50(9):2453-2456. doi: 10.3969/j.issn.1671-3206.2021.09.027

    ZHANG Shuxia, PEI Ting, YUAN Min, et al. Classification treatment and efficiency analysis of waste drilling fluid[J]. Applied Chemical Industry, 2021, 50(9):2453-2456. doi: 10.3969/j.issn.1671-3206.2021.09.027
    [6] 李青洋,蒋官澄,谢水祥,等. 一种适用于聚磺钻井液废液的高效脱色剂[J]. 钻井液与完井液,2014,31(6):43-46. doi: 10.3969/j.issn.1001-5620.2014.06.012

    LI Qingyang, JIANG Guancheng, XIE Shuixiang, et al. High performance decolorant for waste polymer sulfonate mud treatment[J]. Drilling Fluid & Completion Fluid, 2014, 31(6):43-46. doi: 10.3969/j.issn.1001-5620.2014.06.012
    [7] 宋淑芬,马立安,胡传炯,等. 一株磺化钻井液降解菌的筛选鉴定及其降解特性[J]. 石油钻采工艺,2018,40(5):589-595.

    SONG Shufen, MA Li’an, HU Chuanjiong, et al. Screening, evaluation and degradation property of the degrading bacteria suitable for sulphonated drilling fluid[J]. Oil Drilling & Production Technology, 2018, 40(5):589-595.
    [8] 王伟吉. 抗温环保纳米纤维素降滤失剂的研制及特性[J]. 钻井液与完井液,2020,37(4):421-426. doi: 10.3969/j.issn.1001-5620.2020.04.003

    WANG Weiji. Development and characteristics of a high temperature environmentally friendly nanocellulose filter loss reducer[J]. Drilling Fluid & Completion Fluid, 2020, 37(4):421-426. doi: 10.3969/j.issn.1001-5620.2020.04.003
    [9] 刘均一,郭保雨,王勇,等. 环保型水基钻井液在胜利油田的研究与应用[J]. 钻井液与完井液,2020,37(1):64-70.

    LIU Junyi, GUO Baoyu, WANG Yong, et al. Study and application of environmentally friendly water base drilling fluid in Shengli oilfield[J]. Drilling Fluid & Completion Fluid, 2020, 37(1):64-70.
    [10] 刘畅,许洁,冉恒谦. 干热岩抗高温环保水基钻井液体系[J]. 钻井液与完井液,2021,38(4):412-422.

    LIU Chang, XU Jie, RAN Hengqian. An environmentally friendly high temperature water based drilling fluid for hot-dry-rock well drilling[J]. Drilling Fluid & Completion Fluid, 2021, 38(4):412-422.
    [11] 钟汉毅,高鑫,邱正松,等. 树枝状聚合物在钻井液中的应用研究进展[J]. 钻井液与完井液,2019,36(4):397-406. doi: 10.3969/j.issn.1001-5620.2019.04.001

    ZHONG Hanyi, GAO Xin, QIU Zhengsong, et al. Progress in applying and studying dendrimers in drilling fluids[J]. Drilling Fluid & Completion Fluid, 2019, 36(4):397-406. doi: 10.3969/j.issn.1001-5620.2019.04.001
    [12] 金军斌. 钻井液用润滑剂研究进展[J]. 应用化工,2017,46(4):770-774. doi: 10.3969/j.issn.1671-3206.2017.04.039

    JIN Junbin. Research advances of the lubricants for drilling fluid[J]. Applied Chemical Industry, 2017, 46(4):770-774. doi: 10.3969/j.issn.1671-3206.2017.04.039
    [13] 张平. 顺北蓬1井Φ444.5 mm长裸眼井筒强化钻井液技术[J]. 石油钻探技术,2018,46(3):27-33.

    ZHANG Ping. Wellbore enhancing technology for Φ444.5 mm open hole section in well SHBP1 by means of drilling fluid optimization[J]. Petroleum Drilling Techniques, 2018, 46(3):27-33.
    [14] 林永学,王伟吉,金军斌. 顺北油气田鹰1井超深井段钻井液关键技术[J]. 石油钻探技术,2019,47(3):113-120. doi: 10.11911/syztjs.2019068

    LIN Yongxue, WANG Weiji, JIN Junbin. Key drilling fluid technology in the ultra deep section of well Ying-1 in the Shunbei oil and gas field[J]. Petroleum Drilling Techniques, 2019, 47(3):113-120. doi: 10.11911/syztjs.2019068
    [15] 牛晓,潘丽娟,甄玉辉,等. SHB1-6H井长裸眼钻井液技术[J]. 钻井液与完井液,2016,33(5):30-34.

    NIU Xiao, PAN Lijuan, ZHEN Yuhui, et al. Drilling fluid technology for long open hole section of well SHB1-6H[J]. Drilling Fluid & Completion Fluid, 2016, 33(5):30-34.
    [16] 刘湘华,陈晓飞,李凡,等. SHBP-1超深井三开长裸眼钻井液技术[J]. 钻井液与完井液,2019,36(6):721-726.

    LIU Xianghua, CHEN Xiaofei, LI Fan, et al. Drilling fluid technology for long open section of the third interval of the ultradeep well SHBP-1[J]. Drilling Fluid & Completion Fluid, 2019, 36(6):721-726.
    [17] 张金波,鄢捷年. 钻井液暂堵剂颗粒粒径分布的最优化选择[J]. 油田化学,2005,22(1):1-5. doi: 10.3969/j.issn.1000-4092.2005.01.001

    ZHANG Jinbo, YAN Jienian. Optimization of particle size distribution for temporarily plugging/shielding agents in water base reservoir drilling fluids[J]. Oilfield Chemistry, 2005, 22(1):1-5. doi: 10.3969/j.issn.1000-4092.2005.01.001
    [18] 黄达全,许少营,田增艳. 广谱型屏蔽暂堵保护油层技术在大港油田的应用[J]. 钻井液与完井液,2004,21(6):23-27. doi: 10.3969/j.issn.1001-5620.2004.06.007

    HUANG Daquan, XU Shaoying , TIAN Zengyan. Application of general-purpose shielding temporary plugging technology in Dagang oilfieid[J]. Drilling Fluid & Completion Fluid, 2004, 21(6):23-27. doi: 10.3969/j.issn.1001-5620.2004.06.007
  • 加载中
图(6) / 表(7)
计量
  • 文章访问数:  719
  • HTML全文浏览量:  269
  • PDF下载量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-02
  • 修回日期:  2022-02-23
  • 录用日期:  2021-12-11
  • 刊出日期:  2022-07-30

目录

    /

    返回文章
    返回