留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

阜康凹陷井壁失稳机理与封堵防塌油基钻井液体系

刘可成 周俊 崔鑫 周泽南 于永生 李建国 蒋官澄

刘可成,周俊,崔鑫,等. 阜康凹陷井壁失稳机理与封堵防塌油基钻井液体系[J]. 钻井液与完井液,2022,39(4):451-458 doi: 10.12358/j.issn.1001-5620.2022.04.009
引用本文: 刘可成,周俊,崔鑫,等. 阜康凹陷井壁失稳机理与封堵防塌油基钻井液体系[J]. 钻井液与完井液,2022,39(4):451-458 doi: 10.12358/j.issn.1001-5620.2022.04.009
LIU Kecheng, ZHOU Jun, CUI Xin, et al.Mechanisms of borehole wall instability in Fukang sag block and an oil based drilling fluid with plugging and inhibitive capacities[J]. Drilling Fluid & Completion Fluid,2022, 39(4):451-458 doi: 10.12358/j.issn.1001-5620.2022.04.009
Citation: LIU Kecheng, ZHOU Jun, CUI Xin, et al.Mechanisms of borehole wall instability in Fukang sag block and an oil based drilling fluid with plugging and inhibitive capacities[J]. Drilling Fluid & Completion Fluid,2022, 39(4):451-458 doi: 10.12358/j.issn.1001-5620.2022.04.009

阜康凹陷井壁失稳机理与封堵防塌油基钻井液体系

doi: 10.12358/j.issn.1001-5620.2022.04.009
详细信息
    作者简介:

    刘可成,工程师,1988年生,毕业于中国石油大学(北京)化学工程专业,现在从事钻井液技术研究工作。E-mail:liukecheng2014@163.com

  • 中图分类号: TE 254.3

Mechanisms of Borehole Wall Instability in Fukang Sag Block and an Oil Based Drilling Fluid with Plugging and Inhibitive Capacities

  • 摘要: 针对阜康凹陷区块钻井遭遇的井壁失稳难题,通过全岩矿物分析、黏土矿物分析、岩石微观结构特征分析研究了区块不同层位岩石的特性,发现以高岭土为主的易水化分散矿物含量高和岩石存在大量孔缝微结构是导致井壁失稳的主要原因。以F49井油基钻井液为典型,基于井壁失稳机理提出了钻井液性能优化方向;合成了双亲性聚丙烯酸树脂颗粒作为油基钻井液胶结型封堵剂FD-FK、多聚脂肪酸作为油基钻井液提切剂TQ-FK,经FD-FK与TQ-FK优化后,钻井液的低剪切速率下黏度与动塑比大幅提高,可封堵的孔隙直径范围从2~90 μm扩大至2~380 μm,承压达8 MPa,封堵防塌性能优良。在阜47井三开井段现场应用优化后的防塌封堵油基钻井液,复杂井段的平均井径扩大率仅为3.35%,应用效果优良,为阜康凹陷油气“安全、高效”钻井提供了一项有力技术支撑。

     

  • 图  1  阜康凹陷各层位岩石的扫描电子显微镜照片(放大倍数1000~3000倍,从左至右依次为1#~17#岩样)

    图  2  阜康凹陷各层位岩石的扫描电子显微镜照片(放大倍数5000~10 000倍,从左至右依次为1#~17#岩样)

    图  3  TQ-FK对纯乳液及含土乳液性能的影响

    图  4  FD-FK在不加重油基钻井液中的封堵性能

    图  5  优化后 F49 井油基钻井液在不同   孔径砂盘中 8 MPa 的累计漏失量

    表  1  阜康凹陷地层各层位岩石全岩矿物组成

    岩样井深/m层位矿物含量/%
    石英钾长石斜长石方解石菱铁矿菱镁矿石盐黄铁矿赤铁矿重晶石硬石膏锐钛矿片沸石黏土矿物
    1#2256~2266K1tg42.39.415.51.81.729.3
    2#2592~2596J2t37.45.417.51.62.91.54.629.1
    3#2900~2906J2t56.25.314.10.923.5
    43003~3019J2x38.32.96.35.74.442.4
    5#3240~3247J1s47.74.412.035.9
    6#3449~3454J1b50.311.01.137.6
    7#3934~3940T2k33.72.611.72.02.12.545.4
    8#4297~4317T1s27.43.011.64.32.09.810.131.8
    9#4460T1j28.68.07.456.0
    10#4540~4550P3W327.88.16.33.13.111.040.6
    11#4580左右P3W337.64.857.6
    12#4650~4660P3W336.63.84.61.311.742.0
    13#4710~4720P3W131.32.311.16.11.911.535.8
    14#4970~4980P2l31.126.520.11.820.5
    15#5020~5022P2l35.130.23.11.85.923.9
    16#5218~5222P2l28.73.324.36.50.93.84.96.720.9
    17#5307~5314P2l27.334.67.92.427.8
    下载: 导出CSV

    表  2  阜康凹陷各地层岩石黏土矿物组成

    岩样黏土矿物相对含量/%混层比/%
    I/SI
    K
    C
    C/S
    I/SC/S
    1#651511182025
    2#66302220
    3#314128
    4#5114171262055
    5#4719221220
    6#5222141220
    7#5715161220
    8#671321172010
    9#80124450
    10#75136620
    11#8275640
    12#73891022
    13#57335520
    14#453481315
    15#6511111315
    16#561762120
    17#661541052055
    下载: 导出CSV

    表  3  F49井油基钻井液基本性能

    实验
    条件
    PV/
    mPa·s
    YP/
    Pa
    φ6/φ3Gel/
    Pa/Pa
    FLHTHP/
    mL
    ES/
    V
    热滚前665.623/21.0/1.5345
    热滚后681.022/10.5/0.53.6454
      注:热滚条件为150 ℃、16 h;流变性测试温度为50 ℃;FLHTHP在3.5 MPa下测定,下同
    下载: 导出CSV

    表  4  F49井油基钻井液在不同砂盘中的承压及累计漏失量

    砂盘孔径/
    μm
    不同压力(MPa)下的累计漏失量/mL
    12345678
    250205.9漏光
    150145.2漏光
    9040.142.243.545.447.050.454.257.7
    4027.128.430.332.334.135.937.740.0
    22.62.83.13.53.74.04.24.5
      注:测试温度为150 ℃,下同
    下载: 导出CSV

    表  5  TQ-FK对F49井油基钻井液基本性能的影响

    TQ-KF/
    %
    PV/
    mPa·s
    YP/
    Pa
    YP/PV/
    Pa/mPa·s
    φ6/φ3Gel/
    Pa/Pa
    FLHTHP/
    mL
    ES/
    V
    0681.020.0152/11.0/1.53.6454
    0.2686.640.0984/32.0/3.53.8642
    0.5697.660.1117/64.0/6.04.0661
    1.0717.660.1098/74.5/8.04.0650
    下载: 导出CSV

    表  6  加入TQ-FK后F49井油基钻井液在不同孔径砂盘中的承压及累计漏失量

    砂盘孔
    径/μm
    在不同压力(MPa)下的累计漏失量/mL
    12345678
    250185.9漏光
    15094.2122.5154.9222.2漏光
    9034.235.336.838.038.939.841.143.3
    4018.119.420.321.922.524.025.126.0
    22.22.62.93.13.23.23.33.4
    下载: 导出CSV

    表  7  FD-FK对F49井油基钻井液   性能的影响(150 ℃、16 h)

    FD-FK/
    %
    PV/
    mPa·s
    YP/
    Pa
    YP/PV/
    Pa/mPa·s
    φ6/φ3Gel/
    Pa/Pa
    FLHTHP/
    mL
    ES/
    V
    3718.690.1229/64.0/6.53.4695
    4738.690.1199/85.0/8.03.2723
    57711.750.15311/106.5/8.53.2757
    68012.780.16014/127.0/9.53.0791
    下载: 导出CSV

    表  8  阜47井三开井段钻井液的基本性能

    ρ/
    g·cm−3
    井深/
    m
    PV/
    mPa·s
    YP/
    Pa
    φ6/φ3Gel/
    Pa/Pa
    FLHTHP/
    mL
    ES/
    V
    1.7037024113.8011/105.5/9.53.8638
    1.7439044413.2911/95.5/9.04.2647
    1.7644354612.2612/106.0/10.04.2621
    1.7947684714.3112/106.0/10.04.0666
    1.8152895013.8014/127.5/11.04.2702
    下载: 导出CSV
  • [1] 何海清,支东明,唐勇,等. 准噶尔盆地阜康凹陷康探1井重大突破及意义[J]. 中国石油勘探,2021,26(2):1-11. doi: 10.3969/j.issn.1672-7703.2021.02.001

    HE Haiqing, ZHI Dongming, TANG Yong, et al. A great discovery of well Kangtan 1 in the Fukang sag in the Junggar basin and its significance[J]. China Petroleum Exploration, 2021, 26(2):1-11. doi: 10.3969/j.issn.1672-7703.2021.02.001
    [2] 邹晓峰,杜欣来. 提高井壁强度技术与方法[J]. 中国井矿盐,2013,44(5):25-28. doi: 10.3969/j.issn.1001-0335.2013.05.009

    ZOU Xiaofeng, DU Xinlai. Technology and methods to improve well wall strength[J]. China Well and Rock Salt, 2013, 44(5):25-28. doi: 10.3969/j.issn.1001-0335.2013.05.009
    [3] 邱春阳,张翔宇,赵红香,等. 顺北区块深层井壁稳定钻井液技术[J]. 天然气勘探与开发,2021,44(2):81-86.

    QIU Chunyang, ZHANG Xiangyu, ZHAO Hongxiang, et al. Drilling-fluid system for deep borehole stability in Shunbei block, Tarim basin[J]. Natural Gas Exploration and Development, 2021, 44(2):81-86.
    [4] 罗健生,蒋官澄,王国帅,等. 一种无氯盐环保型强抑制水基钻井液体系[J]. 钻井液与完井液,2019,36(5):594-599. doi: 10.3969/j.issn.1001-5620.2019.05.012

    LUO Jiansheng, JIANG Guancheng, WANG Guoshuai, et al. Development of an environmentally friendly strongly inhibitive chloride-free water base drilling fluid[J]. Drilling Fluid & Completion Fluid, 2019, 36(5):594-599. doi: 10.3969/j.issn.1001-5620.2019.05.012
    [5] 陈彬,张伟国,姚磊,等. 基于井壁稳定及储层保护的钻井液技术[J]. 石油钻采工艺,2021,43(2):184-188.

    CHEN Bin, ZHANG Weiguo, YAO Lei, et al. Drilling fluid technology based on well stability and reservoir protection[J]. Drilling Fluid & Production Technology, 2021, 43(2):184-188.
    [6] 王建华,张家旗,谢盛,等. 页岩气油基钻井液体系性能评估及对策[J]. 钻井液与完井液,2019,36(5):555-559. doi: 10.3969/j.issn.1001-5620.2019.05.005

    WANG Jianhua, ZHANG Jiaqi, XIE Sheng, et al. Evaluation and improvement of the performance of oil base drilling fluids for shale gas drilling[J]. Drilling Fluid & Completion Fluid, 2019, 36(5):555-559. doi: 10.3969/j.issn.1001-5620.2019.05.005
    [7] 李茂森,刘政,胡嘉. 高密度油基钻井液在长宁——威远区块页岩气水平井中的应用[J]. 天然气勘探与开发,2017,40(1):88-92.

    LI Maosen, LIU Zheng, HU Jia. Application of high density oil-based drilling fluid in shale gas horizontal wells of Changning-Weiyuan block[J]. Natural Gas Exploration and Development, 2017, 40(1):88-92.
    [8] 吴雄军,林永学,王显光,等. 顺北5-7井超深层奥陶系地层油基钻井液技术[J]. 长江大学学报(自然科学版),2021,18(1):100-106.

    WU Xiongjun, LIN Yongxue, WANG Xianguang, et al. Oil-based drilling fluid technology for ultra-deep Ordovician strata of well Shunbei 5-7[J]. Journal of Yangtze University (Natural Science Edition), 2021, 18(1):100-106.
    [9] 左京杰,张振华,姚如钢,等. 川南页岩气地层油基钻井液技术难题及案例分析[J]. 钻井液与完井液,2020,37(3):294-300. doi: 10.3969/j.issn.1001-5620.2020.03.005

    ZUO Jingjie, ZHANG Zhenhua, YAO Rugang, et al. Technical difficulties and case study of oil base drilling fluid operation in shale gas drilling in south Sichun[J]. Drilling Fluid & Completion Fluid, 2020, 37(3):294-300. doi: 10.3969/j.issn.1001-5620.2020.03.005
    [10] 汪洪民,刘海声,庞怀玮,等. 青海祁漫塔格那西郭勒泥质岩地层水敏性及其钻井液配方研究[J]. 矿产勘查,2020,11(4):811-817. doi: 10.3969/j.issn.1674-7801.2020.04.027

    WANG Hongmin, LIU Haisheng, PANG Huaiwei, et al. Water sensitivity of argillaceous rocks and drilling fluid formulation in Naxigole of Qimantagana, Qinghai province[J]. Mineral Exploration, 2020, 11(4):811-817. doi: 10.3969/j.issn.1674-7801.2020.04.027
    [11] 李辉,郑义平,陈亮,等. 抗高温高密度钻井液配方的研制与性能评价[J]. 长江大学学报(自然科学版),2019,16(11):27-31.

    LI Hui, ZHENG Yiping, CHEN Liang, et al. Development and performance evaluation of high temperature and high density drilling fluid formulation[J]. Journal of Yangtze University (Natural Science Edition), 2019, 16(11):27-31.
    [12] 王星媛,陆灯云,吴正良. 抗220 ℃高密度油基钻井液的研究与应用[J]. 钻井液与完井液,2020,37(5):550-554,560.

    WANG Xingyuan, LU Dengyun, WU Zhengliang. Study and application of a high density oil base drilling fluid with high temperature resistance of 220 ℃[J]. Drilling Fluid & Completion Fluid, 2020, 37(5):550-554,560.
    [13] 潘谊党,于培志. 密度对油基钻井液性能的影响[J]. 钻井液与完井液,2019,36(3):273-279. doi: 10.3969/j.issn.1001-5620.2019.03.002

    PANG Yidang, YU Peizhi. Effect of density on the performance of oil base drilling fluid[J]. Drilling Fluid & Completion Fluid, 2019, 36(3):273-279. doi: 10.3969/j.issn.1001-5620.2019.03.002
    [14] 王伟,赵春花,罗健生,等. 抗高温油基钻井液封堵剂PF-MOSHIELD的研制与应用[J]. 钻井液与完井液,2019,36(2):153-159.

    WANG Wei, ZHAO Chunhua, LUO Jiansheng, et al. Development and application of the high temperature plugging agent PF-MOSHIELD for oil base drilling fluids[J]. Drilling Fluid & Completion Fluid, 2019, 36(2):153-159.
    [15] 王伟吉,邱正松,黄维安,等. 纳米聚合物微球封堵剂的制备及特性[J]. 钻井液与完井液,2016,33(1):33-36. doi: 10.3969/j.issn.1001-5620.2019.02.004

    WANG Weiji, QIU Zhengsong, HUANG Weian, et al. Preparation and characteristics of nano polymer microsphere used as plugging agent in drilling fluid[J]. Drilling Fluid & Completion Fluid, 2016, 33(1):33-36. doi: 10.3969/j.issn.1001-5620.2019.02.004
    [16] SVETLANA R DERKACH. Rheology of emulsions[J]. Advances in Colloids and Interfaces Science, 2009, 151:1-23. doi: 10.1016/j.cis.2009.07.001
    [17] XUAN Yang, JIANG Guancheng , LI Yingying, et al. A biomimetic drilling fluid for wellbore strengthening[J]. Petroleum Exploration and Development, 2013, 40(4):531-536. doi: 10.1016/S1876-3804(13)60069-5
    [18] JIANG Guancheng, SUN Jinsheng, HE Yinbo, et al. Novel water-based drilling and completion fluid technology to improve well-bore quality during drilling and protect unconventional reservoirs[J]. Engineering,2021.
  • 加载中
图(5) / 表(8)
计量
  • 文章访问数:  673
  • HTML全文浏览量:  291
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-03
  • 修回日期:  2022-02-23
  • 录用日期:  2021-09-03
  • 刊出日期:  2022-07-30

目录

    /

    返回文章
    返回