留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

抗高温高钙梳型降滤失剂的制备与应用

张万栋 王爱佳 郭浩 曹峰 徐靖 杨丽丽

张万栋,王爱佳,郭浩,等. 抗高温高钙梳型降滤失剂的制备与应用[J]. 钻井液与完井液,2022,39(4):435-440 doi: 10.12358/j.issn.1001-5620.2022.04.006
引用本文: 张万栋,王爱佳,郭浩,等. 抗高温高钙梳型降滤失剂的制备与应用[J]. 钻井液与完井液,2022,39(4):435-440 doi: 10.12358/j.issn.1001-5620.2022.04.006
ZHANG Wandong, WANG Aijia, GUO Hao, et al.Development and application of comb-like polymer filter loss reducer with high temperature and high calcium contamination resistance[J]. Drilling Fluid & Completion Fluid,2022, 39(4):435-440 doi: 10.12358/j.issn.1001-5620.2022.04.006
Citation: ZHANG Wandong, WANG Aijia, GUO Hao, et al.Development and application of comb-like polymer filter loss reducer with high temperature and high calcium contamination resistance[J]. Drilling Fluid & Completion Fluid,2022, 39(4):435-440 doi: 10.12358/j.issn.1001-5620.2022.04.006

抗高温高钙梳型降滤失剂的制备与应用

doi: 10.12358/j.issn.1001-5620.2022.04.006
基金项目: 中海石油(中国)有限公司科研项目“南海西部油田上产2000万方钻完井关键技术研究”课题(CNOOC-KJ 135ZDXM38 ZJ 05 ZJ)子课题3任务“乌石17-2油田钻完井液体系储层保护技术研究”
详细信息
    作者简介:

    张万栋,2008年毕业于吉林大学,现在主要从事高温高压钻井工艺研究应用与管理工作。电话18934221449;E-mail:zhangwd4@cnooc.com.cn

    通讯作者:

    杨丽丽,中国石油大学(北京)副教授,博士生导师,现在主要从事油气层损害与保护、油田化学等方面的教学和研究工作。E-mail:yangll@cup.edu.cn

  • 中图分类号: TE254.4

Development and Application of Comb-like Polymer Filter Loss Reducer with High Temperature and High Calcium Contamination Resistance

  • 摘要: 选择几种不同的单体,按照一定配比,优选最佳方案合成梳型聚合物降滤失剂WA-1,并通过对比实验对其进行性能评价。选用2-丙烯酰胺基-2-甲基丙磺酸(AMPS)、二甲基二烯丙基氯化铵(DMDAAC)、N-乙烯基吡咯烷酮(NVP)和N,N-二甲基丙烯酰胺(DMAA)为单体,合成质量配比AMPS∶DMDAAC∶NVP∶DMAA=5∶3∶1∶1,总单体浓度19.8%,加0.2%过硫酸钾作为引发剂,反应温度为60 ℃,反应时间共5 h,pH值为7。性能评价结果表明,WA-1可抗温180 ℃,具有良好的流变性和降滤失性,抗钙性能良好;含2%CaCl2的基浆中加2%WA-1,在180 ℃老化16 h后,中压滤失量为11.2 mL,降滤失效果优于线性聚合物。对WA-1进行红外光谱表征、热重量分析、钻井液Zeta电位和粒径分布分析,结果表明,WA-1作为梳型聚合物降滤失剂,能够抗高温高钙,提高钻井液的稳定性,具备独特的性能优势。

     

  • 图  1  WA-1的红外光谱

    图  2  WA-1的TG曲线

    图  3  不同CaCl2加量老化后滤饼(180 ℃)

    图  4  不同基浆的粒径分布

    表  1  方案优选

    方案溶剂骨架
    单体
    支链
    单体
    pH
    中性
    FLAPI/mL
    1 甲醇 AMPS+
    DMAA+NVP
    DMDAAC 全漏
    2 全漏
    3 乙醇 AMPS+NVP+
    DMDAAC
    DMAA 8.4
    4 AMPS+
    DMAA+NVP
    DMDAAC 全漏
    5 去离子水 PVA AMPS+DMAA+NVP+DMDA 17.3
    6 AC 42.4
      注:滤失量在25 ℃测定,方案1、2、3引发剂使用过硫酸钾;方案4、5、6引发剂使用硝酸铈铵
    下载: 导出CSV

    表  2  加入WA-1后基浆的流变参数和滤失性

    WA-1/
    %
    实验
    条件
    AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    YP/PV/
    Pa/mPa·s
    FLAPI/
    mL
    0.5老化前12.584.50.5612.4
    老化后17.5134.50.3518.8
    1.0老化前13.094.00.4410.4
    老化后30.5246.50.2714.8
    1.5老化前11.583.50.448.4
    老化后23.0176.00.3513.6
    2.0老化前12.093.00.337.20
    老化后19.5154.50.307.60
      注:老化条件为180 ℃、16 h
    下载: 导出CSV

    表  3  加入2%WA-1基浆在不同温度老化16 h后的抗温性

    T老化/
    AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    YP/PV/
    Pa/mPa·s
    FLAPI/
    mL
    2519.5154.50.307.6
    12015.0114.00.3610.6
    15026.0215.00.2411.2
    18019.5154.50.3011.6
    20010.082.00.2515.2
    下载: 导出CSV

    表  4  WA-1的抗钙实验(180 ℃、16 h)

    氯化钙/
    %
    实验
    条件
    $ {\mathrm{\varphi }}_{600} $$ {\mathrm{\varphi }}_{300} $AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    FLAPI/
    mL
    1老化前271713.5103.55.6
    老化后19109.590.59.6
    2老化前251412.5111.56.4
    老化后1698.071.011.2
    3老化前1386.551.59.6
    老化后1376.560.522.4
    4老化前12116.015.012.8
    老化后1065.041.064.0
    下载: 导出CSV

    表  5  在2%CaCl2基浆中加入不同聚合物的性能

    聚合物实验
    条件
    AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    FLAPI/
    mL
    0 老化前 5.0 4 1.0 105
    180 ℃、16 h 2.5 1 1.5 194
    2%线性
    聚合物
    老化前 20.0 14 6.0 18.4
    180 ℃、16 h 5.0 5 0 54.0
    2%WA-1
    聚合物
    老化前 12.5 11 1.5 6.4
    180 ℃、16 h 8.0 7 1.0 11.2
    下载: 导出CSV

    表  6  不同基浆的Zeta电位分析

    配方ξ/mV
    基浆−30.5
    基浆+2%CaCl2−12.0
    基浆+2%CaCl2+2%WA-1−20.0
    下载: 导出CSV
  • [1] 杨小华. 再论国内近5年钻井液处理剂研究与应用进展[C]//2009中国油田化学品发展研讨会(第23次全国工业表面活性剂发展研讨会)论文集. 2009: 222-230.

    YANG Xiaohua. Review on the research and application progress of drilling fluid additives in China in the past five years [C]//2009 China Oilfield Chemical Development Seminar (23rd National Industrial Surfactant Development Seminar). 2009 : 222-230.
    [2] 牛龙飞. 水溶性梳型聚合物降滤失剂的合成与性能评价[D]. 山东大学, 2012.

    NIU Longfei. Synthesis and performance evaluation of water-soluble comb polymer filtrate reducer [D]. Shandong University, 2012.
    [3] 迟姚玲,郑力会,冀德坤,等. 抗温环保型降滤失剂改性玉米淀粉的合成与评价[J]. 中国石油大学学报(自然科学版),2011,35(1):151-154.

    CHI Yaoling, ZHENG Lihui, JI Dekun, et al. Synthesis and evaluation of heat-resistant and environment-friendly filtrate reducer modified corn starch[J]. Journal of China University of Petroleum (Natural Science Edition), 2011, 35(1):151-154.
    [4] 乔英杰,王慎敏,甄捷,等. 抗高温抗盐降滤失剂SHK-AN的合成及性能研究[J]. 哈尔滨师范大学自然科学学报,2001(5):86-90.

    QIAO Yingjie, WANG Shenmin, ZHEN Jie, et al. Synthesis and properties of high-temperature and salt-resistant filtrate reducer SHK-AN[J]. Journal of Natural Science, Harbin Normal University, 2001(5):86-90.
    [5] 王小石,唐仕忠,刘传禄. 新型高温抗盐降滤失剂RSTF的研究[J]. 钻井液与完井液,1997(2):28-30.

    WANG Xiaoshi, TANG Shizhong, LIU Chuanlu. Study on a new high temperature salt resistant filtrate reducer RSTF[J]. Drilling Fluid & Completion Fluid, 1997(2):28-30.
    [6] 史俊,李谦定,王涛. 硅化腐植酸钠GFN-1的研制[J]. 钻井液与完井液,2007(4):12-14.

    SHI Jun, LI Qianding, WANG Tao. Preparation of sodium silicified humic acid GFN-1[J]. Drilling Fluid & Completion Fluid, 2007(4):12-14.
    [7] 胡俊明,沈埜,徐僖,等. 接枝改性纤维素及其对水泥浆降失水性能的研究[J]. 油田化学,1989(2):100-104.

    HU Junming, SHEN Ye, XU Xi, et al. Grafted cellulose and its effect on water loss reduction of cement paste[J]. Oilfield Chemistry, 1989(2):100-104.
    [8] PATEL A D. Water-based drilling fluids with high temperature fluid loss control additive: U.S. Patent 5,789,349[P]. 1998-8-4.
    [9] SEPEHRI S, SOLEYMAN R, VARAMESH A, et al. Effect of synthetic water-soluble polymers on the properties of the heavy water-based drilling fluid at high pressure-high temperature (HPHT) conditions[J]. Journal of Petroleum Science and Engineering, 2018, 166:850-856.
    [10] 王艳新,陈艳玲,宋俊庭. Hofmann法制备新型两性离子AM-AMPS共聚物降滤失剂[J]. 地质科技情报,2008(4):107-110.

    WANG Yanxin, CHEN Yanling, SONG Junting. Hofmann method to prepare new amphoteric AM-AMPS copolymer filtrate reducer[J]. Geological Science and Technology Information, 2008(4):107-110.
    [11] 白秋月. DMAA/AMPS/DMDAAC/NVP四元共聚耐温耐盐钻井液降滤失剂的研制[J]. 油田化学,2017,34(1):1-5.

    BAI Qiuyue. Development of DMAA/AMPS/DMDAAC/NVP quaternary copolymer temperature-resistant and salt-tolerant drilling fluid filtrate reducer[J]. Oilfield Chemistry, 2017, 34(1):1-5.
    [12] 王茂功,颜星,彭洁. 爆聚法合成抗高温抗盐水基降滤失剂及性能评价[J]. 钻井液与完井液,2019,36(2):148-152.

    WANG Maogong, YAN Xing, PENG Jie. Synthesis and performance evaluation of anti-high temperature and anti-salt water base filtrate reducer by explosive polymerization[J]. Drilling Fluid and Completion Fluid, 2019, 36(2):148-152.
    [13] 卢潮陵. 高吸水树脂的研究现状及其应用前景[J]. 能源与环境,2011(2):7-9.

    LU Chaoling. Research status and application prospect of super absorbent resin[J]. Energy and Environment, 2011(2):7-9.
    [14] 鄢捷年,罗平亚. 抗高温抗盐失水控制剂磺甲基酚醛树脂(SMP)作用机理的研究[J]. 钻井泥浆,1984(2):1-12.

    YAN Jienian, LUO Pingya. Study on the action mechanism of sulfomethylphenolic resin ( SMP ), a high temperature and salt resistance water loss control agent[J]. Drilling Mud, 1984(2):1-12.
    [15] 周启成,单海霞,位华,等. 环保型生物质合成树脂降滤失剂[J]. 钻井液与完井液,2020,37(5):593-596.

    ZHOU Qicheng, SHAN Haixia, WEI Hua, et al. Environmentally friendly biomass synthetic resin filtrate reducer[J]. Drilling Fluid and Completion Fluid, 2020, 37(5):593-596.
    [16] 程桂玲. 无机-有机聚合物降滤失剂PTF的研制及应用[J]. 钻井液与完井液,2009,26(3):29-31.

    CHENG Guiling. Development and application of inorganic-organic polymer filtrate reducer PTF[J]. Drilling Fluid & Completion Fluid, 2009, 26(3):29-31.
    [17] 张永明,朱红,王芳辉,等. CTAB/聚合物复合插层膨润土降滤失剂的制备与表征[J]. 功能材料,2008,39(12):2028-2031.

    ZHANG Yongming, ZHU Hong, WANG Fanghui, et al. Preparation and characterization of CTAB/polymer composite intercalated bentonite filtrate reducer[J]. Functional Materials, 2008, 39(12):2028-2031.
    [18] 蒲晓林,雷刚,罗兴树,等. 钻井液隔离膜理论与成膜钻井液研究[J]. 钻井液与完井液,2005(6):1-4.

    PU Xiaolin, LEI Gang, LUO Xingshu, et al. Drilling fluid isolation membrane theory and film-forming drilling fluid research[J]. Drilling Fluid & Completion Fluid, 2005(6):1-4.
    [19] 徐同台,赵忠举,袁春. 国外钻井液和完井液技术的新进展[J]. 钻井液与完井液,2004(2):3-12.

    XU Tongtai, ZHAO Zhongju, YUAN Chun. New progress of drilling fluid and completion fluid technology abroad[J]. DrillinG Fluid & Completion Fluid, 2004(2):3-12.
    [20] BOUHAMED H, BOUFI S, MAGNIN A. Dispersion of alumina suspension using comb-like and diblock copolymers produced by RAFT polymerization of AMPS and MPEG[J]. Journal of Colloid and Interface Science, 2007, 312(2):279-291.
    [21] RAN Q, SOMASUNDARAN P, MIAO C, et al. Effect of the length of the side chains of comb-like copolymer dispersants on dispersion and rheological properties of concentrated cement suspensions[J]. Journal of Colloid and Interface Science, 2009, 336(2):624-633.
    [22] 徐运波,蓝强,张斌,等. 梳型聚合物降滤失剂的合成及其在深井盐水钻井液中的应用[J]. 钻井液与完井液,2017,34(1):33-38. doi: 10.3696/j.issn.1001-5620.2017.01.006

    XU Yunbo, LAN Qiang, ZHANG Bin, et al. Synthesis of comb polymer filtrate reducer and its application in deep well brine drilling fluid[J]. Drilling Fluid & Completion Fluid, 2017, 34(1):33-38. doi: 10.3696/j.issn.1001-5620.2017.01.006
  • 加载中
图(4) / 表(6)
计量
  • 文章访问数:  682
  • HTML全文浏览量:  316
  • PDF下载量:  119
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-16
  • 修回日期:  2022-02-25
  • 录用日期:  2021-12-25
  • 刊出日期:  2022-07-30

目录

    /

    返回文章
    返回