Study on Concentration Responsive Water Thixotropic Material and Plugging Technology of Water Bearing Leakage Layer
-
摘要: 常规堵漏浆易被地层水稀释、置换或冲走,稳定性发生破坏,导致封堵失败,含水漏失层的堵漏一直是世界性难题。为此,研发了一种浓度响应型水触变堵漏剂,其包括浓度响应处理剂SMF及增溶剂SMZ,水触变剂的水溶液流动性好,对混入的水有一定容纳限,在容纳限以内仍能保持好的流变性与稳定性,但当水的混入量超过容纳限后SMF便发生自聚合,沉淀生成具有一定黏稠、挂壁性强和可变性的三维网状结构半固体凝胶,浓度响应范围和容纳限均可以通过调整2种处理剂的配比和加量进行调控,进而研制了新型水触变堵漏技术。水触变桥接堵漏浆能够在流水下滞留,滞留物在水中的黏结力达到1.166 MPa,达到专用黏结剂在空气条件下的黏结能力;水触变固结堵漏浆不被地层水稀释且能在水中固化。该技术在SHB5-15H井应用中成功封堵了含水漏层,且配制简单、安全性好,水下滞留能力强,为解决含水漏层的封堵问题提供了一种便捷安全高效的新型堵漏技术,具有很好的应用前景。Abstract: The conventional plugging slurry is easy to be diluted、replaced or washed away by formation water, so plugging in containing water formation is a worldwide problem. Therefore, a concentration responsive water thixotropic plugging agent has been developed, which including concentration responsive treatment agent SMF and solubilizer SMZ. The solution of water thixotropic agent has good fluidity, has a certain limition for the mixed water, and can still maintain good rheology and stability within the tolerance limition. However, when the water exceeds the tolerance limition, SMF will change to three dimensional network structure semisolid gels which has certain hardness、viscosity by self polymerize. Concentration response range and Limition of water can be adjusted by adjusting the ratio and dosage of SMF and SMZ, and a new water thixotropic plugging technology is developed. The water thixotropic bridging plugging slurry can be retained under flowing water, and the adhesion of the retained material in water reaches 1.166 MPa. Water thixotropic consolidation plugging slurry is not diluted by formation water and can be solidified in water. The plugging technology has applicated in SHB5-15H well,and successfully blocks the water bearing leakage layer. The plugging technology is simple preparated, and has good safety and strong underwater retention capacity. It provides a convenient、safe and efficient new plugging technology to solve the plugging problem of water bearing leakage layer, and has a good application prospect.
-
Key words:
- Water leakage layer /
- Plugging /
- Water proofing /
- Water thixotropy /
- Retention of plugging agent
-
表 1 部分含活跃水的缝洞漏失层的漏失量及堵漏情况
井号 层位 井深/m t堵漏/d 漏失量/m3 备注 春生1 雷口坡-嘉陵江 1452~1768 55 60 951 改变井身结构 胜页1 嘉陵江 625~701 35 41 500 改变井身结构 彭页2 大冶组 132~379 48 10 057 挪井位 焦页64-2 雷口坡 1254~1264 42 26 853 强钻 顺北5-5 志留系 5565~5810 110 1522 改变井身结构 顺北52X 志留系 5565~6725 134 2463 挪井位 表 2 不同浓度SMF对SMZ的最低需求量
SMF/% SMZ/g φ600 φ300 φ200 φ100 φ6 φ3 外观 75 0 很黏稠透明液 50 3 14 11 8 5 3 2 透明澄清溶液 30 6 9 8 4 2 1 1 透明澄清溶液 25 8 8 6 3 2 1 1 透明澄清溶液 20 10 6 4 3 2 1 1 透明澄清溶液 10 10 5 3 2 1 1 1 透明澄清溶液 注:SMZ为有效含量15%的水溶液,SMF溶液全部取100 g 表 3 SMZ加量对SMF水溶液黏度的影响规律
SMZ/g φ600 φ300 φ200 φ100 φ6 φ3 水溶液外观 0 沉淀分层 2 19 16 12 9 4 3 溶液浑浊,黏度计上
黏附一层絮状物3 14 11 8 5 3 2 澄清透明溶液 5 10 8 5 2 1 1 澄清透明溶液 6 10 7 5 2 1 1 澄清透明溶液 注:SMF最终浓度保持为50%,SMZ为有效含量为15%的水溶液。 表 4 水加量对于SMF溶液透光度及 Zeta电位的影响
SMF/% 水/g 透光率/% ξ/mV 目测效果 50.0 0 100(校正值) −58 透明溶液 47.6 5 107 −54 透明溶液 45.5 10 125 −49 透明溶液 43.5 15 86 −33 透明溶液 41.7 20 37 −7 有浑浊 40.0 25 16 −3 浑浊溶液 35.7 40 分层 表 5 水触变剂对常规桥接堵漏配方的影响
堵漏配方 φ600 2 mm裂缝 承压/MPa 1# 237 封堵成功 4 1#+40%水 166 封堵失败 1#+30%SMF+
1%SMZ256 封堵成功 7 1#+30%SMF+
1%SMZ+40%水液固分层,固体黏稠,
整体搅拌不均匀封堵成功 7 表 6 不同温度下水触变剂对水泥浆稠化性能的影响
触变剂 t稠化/min p/MPa 55 ℃ 100 ℃ 120 ℃ 24 h、80 ℃ 0 170 138 120 17 30%SMF+1%SMZ 256 176 116 19 注:水泥浆配方:油井水泥+缓凝剂+水 ,密度为1.89 g/cm3 -
[1] 张洪利,郭艳,王志龙. 国内钻井堵漏材料现状[J]. 特种油气藏,2004,11(2):1-2.ZHANG Hongli, GUO Yan, WANG Zhilong. Lost circulation materials in China[J]. Special Oil and Gas Reservoirs, 2004, 11(2):1-2. [2] 徐同台,刘玉杰,申威,等. 钻井工程防漏堵漏技术[J]. 石油工业出版社,1997:279-284.XU Tongtai, LIU Yujie, SHEN Wei, et al. Leakage prevention and plugging technology of drilling engineering[J]. Petroleum Industry Press, 1997:279-284. [3] 李锦峰. 恶性漏失地层堵漏技术研究[J]. 探矿工程(岩土钻掘工程),2019,46(5):19-25.LI Jinfeng. The status and development direction of plugging technology for severe circulation loss formation[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling) , 2019, 46(5):19-25. [4] 庞方言,毛亚军,孙渊珍,等. 延安气田注水泥堵漏“插旗杆”事故案例分析与思考[J]. 云南化工,2019,46(3):175-177.PANG Fangyan, MAO Yajun, SUN Yuanzhen, et al. Case analysis and consideration of “flag rod”accident of cement plugging in Yan’an gas field[J]. Yunnan Chemical Technology, 2019, 46(3):175-177. [5] 申威. 用化学凝胶堵剂处理水层漏失[J]. 钻采工艺,1992,15(3):24-27.SHEN Wei. Treatment of water loss by chemical gel plugging agent[J]. Drilling & Production Technology, 1992, 15(3):24-27. [6] 王平全,聂勋勇,张新民,等. 特种凝胶在处理“井漏井喷”中的应用[J]. 天然气工业,2008,28(6):81-82.WANG Pingquan, NIE Xunyong, ZHANG Xinmin, et al. Application of a special gel to controlling blowout and lost circulation[J]. Natural Gas Industry, 2008, 28(6):81-82. [7] 罗兴树,蒲晓林,黄岩,等. 堵漏型聚合物凝胶材料研究与评价[J]. 钻井液与完井液,2006,23(2):28-32.LUO Xinshu, PU Xiaolin, HUANG Yan, et al. Study and evaluation on gelling polymer with plugging effect dfcf[J]. Drilling Fluid & Completion Fluid, 2006, 23(2):28-32. [8] 聂勋勇,王平全,张新民. 聚合物凝胶堵漏技术研究进展[J]. 钻井液与完井液,2007,24(1):82-84.NIE Xunyong, WANG Pingquan, ZHANG Xinmin. Progresses in gelling polymer sealing technology research[J]. Drilling Fluid & Completion Fluid, 2007, 24(1):82-84. [9] 赵素丽,刘金华. 防水冲稀堵漏预处理剂HSN的研制及应用[J]. 钻井液与完井液,2011,28(6):8-10.ZHAO Suli, LIU Jinhua. Research on preprocessing LCM HSN used in water dilution prevention[J]. Drilling Fluid&Completion Fluid, 2011, 28(6):8-10. [10] 郭新健,于培志. 抗高温化学凝胶堵漏技术在顺北52X井的应用[J]. 钻井液与完井液,2019,36(2):189-192.GUO Xinjian, YU Peizhi. Controlling mud losses in well Shunbei 52X with high temperature chemical gels[J]. Drilling Fluid & Completion Fluid, 2019, 36(2):189-192. [11] 汪建军,李艳,刘强,等. 新型多功能复合凝胶堵漏性能评价[J]. 天然气工业,2005,25(9):101-103.WANG Jianjun, LI Yan, LIU Qiang. Evaluation on sealing ability of new multi-function composite gel[J]. Natural gas Industry, 2005, 25(9):101-103. [12] DONALD L, WHITFILL, TERRY HEMPHILL, et al. All lost-circulation materials and systems are not created equal[R]. SPE 84319, 2003. [13] LIU J,TAN C S Y,YU Z,et al. Biomimetic supramolecular polymer networks exhibiting both toughness and self - recovery[J]. Advanced Materials, 2017, 29(10):1604951. doi: 10.1002/adma.201604951 [14] 郑有成,李向碧,邓传光,等. 川东北地区恶性井漏处理技术探索[J]. 天然气工业,2003,23(6):84-85.ZHENG Youcheng, LI Xiangbi, DENG Chuanguang, et al. Techniques of treating seriously lost circulations in northeast Sichuan[J]. Natural Gas Industry, 2003, 23(6):84-85. [15] 杨勇,罗鸣, 韩成,等. 国内外大裂缝、溶洞性复杂地层堵漏技术进展[J]. 化学工程与装备,2018(8):282-284.YANG Yong, LUO Ming, HAN Cheng, et al. Progress of plugging technology in large fracture and cave complex formation at home and abroad[J]. Chemical Engineering & Equipment, 2018(8):282-284. [16] 李辉, 刘华康,何仲,等. 塔河油田碳酸盐岩储层恶性漏失空间堵漏凝胶技术[J]. 钻井液与完井液,2019,36(1):25-28.LI Hui, LIU Huakang, HE Zhong, et al. Use gel to control severe mud losses in carbonate reservoir formations in tahe oilfield[J]. Drilling Fluid & Completion Fluid, 2019, 36(1):25-28. [17] 黄雪松,李智慧,代翼. 剪切响应智能堵漏功能微粒的制备和应用研究[J]. 合成材料老化与应用,2020,49(2):92-95.HUANG Xuesong, LI Zhihui, DAI Yi. Preparation of shear-force-response intelligent functional particles and their application for leak plugging[J]. Synthetic Materials Aging and Application, 2020, 49(2):92-95. [18] 张东清. 脉冲推挤膨润土水泥浆封堵流动水恶性漏失层[J]. 钻井液与完井液,2022,39(1):87-91.ZHANG Dongqing. The technology of interval push clay-cement slurry to lost circulation in water bearing formation[J]. Drilling Fluid & Completion Fluid, 2022, 39(1):87-91. [19] 郭军,陈相霖,赵训林,等. 桂中-南盘江地区黔水地1井钻井关键技术[J]. 断块油气田,2021,28(3):423-427.GUO Jun, CHEN Xianglin, ZHAO Xunlin, et al. Key drilling technologies for well Qianshuidi 1 in Guizhong-Nanpanjiang area[J]. Fault-Block Oil & Gas Field, 2021, 28(3):423-427. [20] 艾磊,宫臣兴,谢江锋,等. 超分子聚合物堵漏技术在长庆油田恶性漏失井的应用[J]. 钻井液与完井液,2021,38(6):705-714.AI Lei, GONG Chenxing, XIE Jiangfeng, et al. Application of supramolecular polymer plugging technology in changqing oilfield[J]. Drilling Fluid & Completion Fluid, 2021, 38(6):705-714. [21] 张怀文,曲从锋,何海星,等. 昭通地区页岩气浅层大缝洞堵漏工具研制[J]. 天然气工业,2021,41(S1):182-185.ZHANG Huaiwen, QU Congfeng, HE Haixing, et al. Development of plugging tool for shallow large fracture and cave of shale gas in Zhaotong area[J]. Natural Gas Industry, 2021, 41(S1):182-185. -