Molecular Dynamics Simulation of Potassium Formate’s Ability to Inhibit Hydration of Montmorillonite
-
摘要: 在盐膏地层或者泥页岩地层钻井过程中,钻遇的地层含有大量的蒙脱石,蒙脱石是典型的水化膨胀性矿物,当钻井液滤液进入蒙脱石含量较高的地层会因水化膨胀作用导致井壁失稳,发生卡钻、井眼缩径、井塌等井下复杂事故。有机盐钻井液的主要成分是含有抑制作用强的甲酸钾,成为目前钻复杂井段的重要水基钻井液体系。为了深入揭示有机盐钻井液中的主要抑制剂甲酸钾抑制蒙脱石水化的机理,采用分子动力学的方法,从分子角度研究其抑制机理。通过建立甲酸钾和蒙脱石的模型,计算两者的相互作用。研究发现在甲酸钾溶液中,电离出的甲酸根主要偏向作用于层间水,且能与水分子形成氢键,电离出的钾离子会吸附在蒙脱石表面,与蒙脱石表面作用,降低蒙脱石的Zeta电位,当质量分数大于一定量时,钾离子对蒙脱石表面作用饱和并开始向层间扩散。通过模拟发现,低浓度的甲酸钾有利于蒙脱石力学性质稳定,随着其浓度继续增加,有利于抑制水分子扩散,而蒙脱石的杨氏模量、剪切模量略微降低,泊松比上升,当浓度大于一定量后,其抑制性趋于稳定,蒙脱石力学性质趋于稳定。模拟认为钻井液中甲酸钾最佳质量分数(相对于水)范围应在32.57%~34.92%。Abstract: Large amount of montmorillonite is generally encountered when drilling in salt/gypsum-containing or shale formations. Montmorillonite, as a typical easily hydrated and swelling clay, when in contact with filtrates from water based drilling fluids, will cause borehole wall instability, stuck pipe, tight hole and borehole collapse etc. Formate water based drilling fluid containing potassium formate, a strongly inhibitive additive, is becoming an important water based mud for drilling complex formations. In laboratory studies, a molecular dynamics method was adopted to further reveal, from the molecular point of view, the mechanisms of potassium formate to inhibit the hydration of montmorillonite. The interaction of potassium formate and montmorillonite was calculated by establishing the models of the two. It was found from the studies that the ionized formate in the potassium formate solution mainly interacts with water molecules existed in between the montmorillonite layers and can form hydrogen bonds with the water molecules. The ionized potassium, on the other hand, is adsorbed on the surfaces of the montmorillonite particles, thereby reducing the zeta-potential of the montmorillonite particles by reacting with the surfaces of the particles. At a concentration that is above a certain level, the number of potassium ions adsorbed onto the surfaces of the montmorillonite particles reaches saturation, and the redundant potassium ions begin to diffuse into the spaces between two montmorillonite layers. Simulation experiments showed that low concentration potassium formate solution is beneficial to stabilizing the mechanical property of montmorillonite; as the concentration of potassium formate increases, it inhibits the diffusion of water molecules, and the mechanical property of the montmorillonite is deteriorated to some extent. When the concentration exceeds a certain level, the inhibitive capacity of potassium formate becomes stabilized, so does the mechanical property of the montmorillonite. The simulation results show that the optimum concentration of potassium formate in water based drilling fluids is 32.57% – 34.92%.
-
表 1 甲酸钾、甲酸根、钾离子对水和蒙脱石表面非键作用能
体系中甲酸钾个数 水化程度 E(J-M)/
kcal/molE(J-W) /
kcal/molE(JS-M) /
kcal/molE(JS-W) /
kcal/molE(K-M) /
kcal/molE(K-W) /
kcal/mol1 二层饱和水 7.304 149.932 −59.890 73.634 67.195 76.298 三层饱和水 7.581 110.862 −16.608 23.476 24.188 87.385 2 二层饱和水 41.654 395.678 −79.793 112.795 121.447 282.883 三层饱和水 10.255 311.593 −32.674 105.173 42.929 206.420 3 二层饱和水 52.360 424.970 −151.526 118.501 203.886 306.469 三层饱和水 14.143 446.982 −52.942 187.006 67.085 259.976 4 二层饱和水 89.367 470.437 −166.687 125.758 256.054 344.679 三层饱和水 13.852 702.646 −70.085 408.689 83.937 293.957 6 二层饱和水 103.087 485.472 −255.451 186.289 358.538 299.183 三层饱和水 112.112 1092.442 −76.594 481.304 188.706 611.138 8 二层饱和水 109.289 587.242 −262.118 100.818 371.407 486.424 三层饱和水 142.850 1130.380 −28.862 501.557 171.712 628.823 -
[1] 叶艳,安文华,尹达,等. 高密度甲酸盐钻井液配方优选及其性能评价[J]. 钻井液与完井液,2014,31(1):37-39. doi: 10.3969/j.issn.1001-5620.2014.01.010YE Yan, AN Wenhua, YIN Da, et al. Formulation optimizing and performance evaluation of high-density formate drilling fluid[J]. Drilling Fluid & Completion Fluid, 2014, 31(1):37-39. doi: 10.3969/j.issn.1001-5620.2014.01.010 [2] 荆鹏. 甲酸钾溶液作内相的油基钻井液[J]. 钻井液与完井液,2014,31(2):21-23. doi: 10.3969/j.issn.1001-5620.2014.02.006JING Peng. Oil base drilling fluid with potassium formate solution as water phase[J]. Drilling Fluid & Completion Fluid, 2014, 31(2):21-23. doi: 10.3969/j.issn.1001-5620.2014.02.006 [3] 刘自明,苗海龙,王冲敏,等. 甲酸钾对PDF-THERM钻井液的影响[J]. 钻井液与完井液,2014,31(5):32-34.LIU Ziming, MIAO Hailong, WANG Chongmin, et al. Study on the effect of potassium formate on PDF-THERM drilling fluid[J]. Drilling Fluid & Completion Fluid, 2014, 31(5):32-34. [4] SKIPPER N T, SPOSITO G, CHANG F R C. MONTE CARLO SIMULATION OF INTERLAYER MOLECULAR STRUCTURE IN SWELLING CLAY MINERALS. 1. METHODOLOGY[J]. Clays and Clay Miner, 1995, 43(3):285-293. doi: 10.1346/CCMN.1995.0430303 [5] CHANG F R C, SKIPPER N T, SPOSITO G. Computer Simulation of Interlayer Molecular Structure in Sodium Montmorillonite Hydrates[J]. Langmuir, 1995, 11:2734-2741. doi: 10.1021/la00007a064 [6] 王进. 蒙脱石层间结构的分子力学和分子动力学模拟研究[D]. 太原理工大学, 2005WANG Jin. Molecular mechanics and molecular dynamics simulation studies of interlayer structure in montmorillonites[D]. Taiyuan University of Technology, 2005. [7] 李小迪. 典型页岩抑制剂抑制蒙脱石水化机理的分子模拟[D]. 中国石油大学(华东), 2016LI Xiaodi. Molecular simulation on montmorillonite hydration inhibition mechanism of typical shale inhibitors[D]. China University of Petroleum(East China), 2016. [8] 黄小娟,徐加放,丁廷稷,等. 有机胺抑制蒙脱石水化机理的分子模拟[J]. 石油钻采工艺,2017,39(4):442-448. doi: 10.13639/j.odpt.2017.04.009HUANG Xiaojuan, XU Jiafang, DING Tingji, et al. Molecular simulation on the inhibition mechanism of organic amine to montmorillonite hydration[J]. Oil Drilling & Production Technology, 2017, 39(4):442-448. doi: 10.13639/j.odpt.2017.04.009 [9] 徐加放,顾甜甜,沈文丽,等. 无机盐对蒙脱石弹性力学参数影响的分子模拟与实验研究[J]. 中国石油大学学报(自然科学版),2016,40(2):83-90.XU Jiafang, GU Tiantian, SHEN Wenli, et al. Influence simulation of inorganic salts on montmorillonite elastic mechanical parameters and experimental study[J]. Journal of China University of Petroleum (Edition of Natural Science) , 2016, 40(2):83-90. [10] SKIPPER N T, SPOSITO G, CHANG F R C. Monte carlo simulation of interlayer molecular structure in swelling clay minerals. 1. methodology[J]. Clays and Clay Miner, 1995, 43(3):285-293. doi: 10.1346/CCMN.1995.0430303 [11] 罗亚飞. Na-蒙脱石表面水化抑制机理的分子模拟[D]. 西南石油大学, 2019LUO Yafei. Molecular simulation of surface hydration inhibition mechanism of Na-montmorillonite[D]. Southwest Petroleum University, 2019. [12] CYGAN R T , LIANG J J , KALINICHEV A G. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field[J]. The Journal of Physical Chemistry B, 2004, 108(4):1255-1266. doi: 10.1021/jp0363287 [13] HILL, R. The Elastic Behaviour of a Crystalline Aggregate[J]. Proceedings of the Physical Society, 1952, 65(5):349-354. doi: 10.1088/0370-1298/65/5/307 [14] 张亚云,陈勉,邓亚,等. 温压条件下蒙脱石水化的分子动力学模拟[J]. 硅酸盐学报,2018(10):22. doi: 10.14062/j.issn.0454-5648.2018.10.21ZHANG Yayun, CHEN Mian, DENG Ya, et al. Molecular Dynamics Simulation of Temperature and Pressure Effects on Hydration Characteristics of Montmorillonites[J]. Journal of the Chinese Ceramic Society, 2018(10):22. doi: 10.14062/j.issn.0454-5648.2018.10.21 [15] 袁俊生,包捷. 钾、钠、氯离子水化现象的分子动力学模拟[J]. 计算机与应用化学,2009,26(10):1295-1299. doi: 10.3969/j.issn.1001-4160.2009.10.016YUAN JunSheng, BAO Jie. Molecular dynamics simulation of K+, Na+ and Cl- hydration[J]. Computers and Applied Chemistry, 2009, 26(10):1295-1299. doi: 10.3969/j.issn.1001-4160.2009.10.016 [16] 郭丽萍,费香鹏,曹园章,等. 氯离子与硫酸根离子在水化硅酸钙表面竞争吸附的分子动力学研究[J]. 材料导报,2021,35(8):8034-8041.GUO Liping, FEI Xiangpeng, CHAO Yuanzhang, et al. Molecular kinetics of competitive adsorption of chloride and sulphate ions on C-S-H surface[J]. Materials Reports, 2021, 35(8):8034-8041. [17] 叶艳,安文华,尹达,等. 甲酸盐溶液对饱和盐水磺化钻井液的适应性评价[J]. 石油与天然气化工,2013,42(6):614-618. doi: 10.3969/j.issn.1007-3426.2013.06.014YE Yan, AN Wenhua, YIN Da, et al. Adaptability evaluation of formate solution to saturated brine sulfonated drilling fluids[J]. Chemical Engineering of Oil & Gas, 2013, 42(6):614-618. doi: 10.3969/j.issn.1007-3426.2013.06.014 [18] TANG Yongming,ZHANG Fan, CAO Ziyi , et al. Crystallization of CaCO3 in the presence of sulfate and additives: Experimental and molecular dynamics simulation studies[J]. Journal of Colloid and Interface Science, 2012(377):430-437. [19] 李杰,林紫嫣. 基于分子模拟方法的HEDP阻垢机理研究[J]. 同济大学学报(自然科学版),2006(4):518-522. doi: 10.3321/j.issn:0253-374X.2006.04.019LI Jie, LIN Ziyan. Research of the HEDP inhibition based on molecular modeling[J]. Journal of Tongji University (Natural Science) , 2006(4):518-522. doi: 10.3321/j.issn:0253-374X.2006.04.019 [20] 钟汉毅,黄维安,邱正松,等. 聚胺与甲酸盐抑制性对比实验研究[J]. 断块油气田,2012,19(4):508-512. doi: 10.6056/dkyqt201204025ZHONG Hanyi, HUANG Weian, QIU Zhengsong, et al. Experimental study of inhibition comparison between polyamine and formates[J]. Fault-Block Oil & Gas Field, 2012, 19(4):508-512. doi: 10.6056/dkyqt201204025 -