Research on Proppant Migration Law of Fractures in Ccontinental Shale Ggas Rreservoir
-
摘要: 为了认识陆相页岩气储层裂缝中支撑剂的铺置规律,采用可视裂缝模拟系统开展支撑剂沉降铺置实验,模拟了不同压裂液黏度、排量、砂比、支撑剂粒径和支撑剂密度条件下支撑剂运移沉降的过程,同时采用PIV粒子测速技术绘制了砂堤入口处与前缘处的速度场,进一步分析了支撑剂铺置过程中颗粒的运动特征。研究结果表明,支撑剂在人工裂缝中的铺置分为四个阶段:早期阶段、中前期阶段、中后期阶段和平衡状态阶段。裂缝入口处:悬浮颗粒的速度方向近似水平向前,砂堤表面颗粒速度沿着坡面向上,支撑剂的推进主要依靠液体黏滞力的携带作用;排量增大,流场出现明显的扰动现象,排量越大,扰动程度越大。砂堤前缘处:坡顶处流场存在明显的涡流现象;液体黏度增加,涡流强度减弱,黏滞力增加,颗粒在液体冲击和携带作用下,铺置更远的距离;排量增加,整个前缘区域出现更大的旋涡,涡流作用更加强烈,此时液体的冲击作用使得支撑剂铺置效果更好;砂比增加,旋涡数量增加,强度增强,波及范围增大,支撑剂运移到裂缝更远端。滑溜水中支撑剂粒径越小、密度越大,砂堤越均匀,但要达到铺置效果,需要携砂液的作用。Abstract: In order to study the proppant migration law of fractures in continental shale gas reservoirs, a visual fracture simulation system was used to carry out proppant migration and settlement experiments, which simulated the process of proppants migration and settlement under the conditions of different fracturing fluid viscosities, displacements, sand ratios, proppant particle sizes and proppant densities. At the same time, the PIV particle velocimetry technology was used to draw the velocity fields at the entrance and the front edge of the sand bank, aiming to further analyze the particles movement characteristics during the migration process. And the following research results were obtained. The migration process of proppants in artificial fractures is divided into four stages: the early stage, the middle-early stage, the middle-late stage and the equilibrium state. At the entrance of the fracture: the velocity of suspended particles is approximately horizontal, and the velocity of particles on the surface of the sand bank is upward along the slope. The propulsion of proppants mainly depends on the carrying effect of liquid viscous force; As the displacement increases, there will be obvious disturbances in the flow field. When the displacement is greater, the degree of disturbance is stronger. At the front edge of the sand bank: There is an obvious vortex phenomenon in the flow field at the top of the slope; The viscosity of the liquid increases, the strength of the vortex is weakened, and the viscous force increases. Under the impact and carrying effect of the liquid, the particles lay farther away; As the displacement increases, a larger vortex appears in the entire front edge area, and the vortex action becomes stronger. At this time, the impact of the liquid makes the proppants placement better; When the sand ratio increases, the number of vortices increases, the strength of vortices intensifies, the spread range enlarges, and the proppants migrate to the farther end of the fracture. When the proppants particle size in slippery water is smaller and the density is higher, the sand bank becomes more uniform, but to achieve the required effect, the sand-carrying liquid is needed.
-
Key words:
- Continental shale gas /
- Proppant /
- Fracturing fluid /
- Migration and settlement /
- PIV particle velocimetry /
- Impact /
- Viscous force /
- Vortex
-
表 1 3种不同压裂液的实验方案
压裂液类型 支撑剂粒径/目 砂比/% 排量/(m3·h-1) 线性胶 20~40 10 1.55 携砂液 1.55 滑溜水 1.55 滑溜水 2.15 滑溜水 2.85 表 2 不同砂比下实验方案
压裂液类型 支撑剂粒径/目 砂比/% 排量/(m3·h−1) 滑溜水 40~70 5 1.55 10 15 20 25 表 3 不同粒径下实验方案
压裂液类型 支撑剂粒径/目 砂比/% 排量/(m3·h−1) 滑溜水 20~40 10 1.55 30~50 40~70 70~140 表 4 不同密度支撑剂的实验方案
压裂液
类型支撑剂
材料ρ支撑剂/
g·cm−3支撑剂
粒径/目砂比/
%排量/
m3·h−1滑溜水 聚合物 0.75 20~40 10 1.25 陶粒Ⅰ 1.57 石英砂 1.72 陶粒Ⅱ 1.80 -
[1] 邹才能,潘松圻,荆振华,等. 页岩油气革命及影响[J]. 石油学报,2020,41(1):1-12. doi: 10.1038/s41401-019-0299-4ZOU Caineng, PAN Songqi, JIN Zhenghua, et al. Shale oil and gas revolution and its impact[J]. Acta Petrolei Sinica, 2020, 41(1):1-12. doi: 10.1038/s41401-019-0299-4 [2] 宋岩,高凤琳,唐相路,等. 海相与陆相页岩储层孔隙结构差异的影响因素[J]. 石油学报,2020,41(12):1501-1512. doi: 10.7623/syxb202012005SONG Yan, GAO Fenglin, TANG Xianglu, et al. Influencing factors of pore structure differences between marine and terrestrial shale reservoirs[J]. Acta Petrolei Sinica, 2020, 41(12):1501-1512. doi: 10.7623/syxb202012005 [3] 唐颖,张金川,张琴,等. 页岩气井水力压裂技术及其应用分析[J]. 天然气工业,2010,30(10):33-38+117. doi: 10.3787/j.issn.1000-0976.2010.10.008TANG Ying, ZHANG Jinchuan, ZHANG Qin, et al. An analysis of fracturing technology in shale gas wells and its application[J]. Natural Gas Industry, 2010, 30(10):33-38+117. doi: 10.3787/j.issn.1000-0976.2010.10.008 [4] 郑有成,范宇,雍锐,等. 页岩气密切割分段+高强度加砂压裂新工艺[J]. 天然气工业,2019,39(10):76-81. doi: 10.3787/j.issn.1000-0976.2019.10.009ZHENG Youcheng, FAN Yu, YONG Rui, et al. A new fracturing technology of intensive stage +high-intensive proppant injection for shale gas reservoirs[J]. Natural Gas Industry, 2019, 39(10):76-81. doi: 10.3787/j.issn.1000-0976.2019.10.009 [5] 潘林华,王海波,贺甲元,等. 水力压裂支撑剂运移与展布模拟研究进展[J]. 天然气工业,2020,40(10):54-65. doi: 10.3787/j.issn.1000-0976.2020.10.007PAN Linhua, WANG Haibo, HE Jiayuan, et al. Progress of simulation study on the migration and distribution of proppants in hydraulic fractures[J]. Natural Gas Industry, 2020, 40(10):54-65. doi: 10.3787/j.issn.1000-0976.2020.10.007 [6] ZHANG Zhaopeng, ZHANG Shicheng, MA Xinfang, et al. Experimental and numerical study on proppant transport in a complex fracture system[J]. Energies, 2020, 13(23):6290. [7] GUO Jianchun, YANG Ruoyu, ZHANG Tao, et al. Experimental and numerical investigations of proppant pack effect on fracture conductivity of channel fracturing[J]. Energy Science & Engineering, 2020, 8(11):3995-4013. [8] 徐保蕊,蒋明虎,赵立新,等. 螺旋分离器水流动特性的CFD模拟与PIV试验[J]. 石油学报,2018,39(2):223-231.XU Baorui, JIANG Minghu, ZHAO Lixin, et al. CFD simulation and PIV test of water flow characteristics in helix separator[J]. Acta Petrolei Sinica, 2018, 39(2):223-231. [9] PAN Linhua ,ZHANG Ye ,CHENG Lijun , et al. Migration and distribution of complex fracture proppant in shale reservoir volume fracturing[J]. Natural Gas Industry B, 2018, 5(6):606-615. [10] LI Peng, ZHANG Xuhui, LU Xiaobing, et al. Experimental study on the self-suspending proppant-laden flow in a single fracture[J]. REM - International Engineering Journal, 2018, 71(2):191-196. [11] HUANG Hai , Tayfun Babadagli,LI Huazhou , et al. A visual experimental study on proppants transport in rough vertical fractures[J]. International Journal of Rock Mechanics and Mining Sciences, 2020:134:104446. [12] 刘俊辰,彭欢,高新平,等. 体积压裂支撑剂缝内沉降规律实验研究[J]. 钻采工艺,2019,42(05):39-42. doi: 10.3969/J.ISSN.1006-768X.2019.05.11LIU Junchen, PENG Huan, GAO Xinping, et al. Experimental study on proppant settlement regularity in fractures during volume fracturing[J]. Drilling & Production Technology, 2019, 42(05):39-42. doi: 10.3969/J.ISSN.1006-768X.2019.05.11 [13] 沈骋,郭兴午,陈马林,等. 深层页岩气水平井储层压裂改造技术[J]. 天然气工业,2019,39(10):68-75. doi: 10.3787/j.issn.1000-0976.2019.10.008SHEN Cheng, GUO Xingwu, CHEN Malin, et al. Horizontal well fracturing stimulation technology for deep shale gas reservoirs[J]. Natural Gas Industry, 2019, 39(10):68-75. doi: 10.3787/j.issn.1000-0976.2019.10.008 [14] 刘建坤,吴峙颖,吴春方,等. 压裂液悬砂及支撑剂沉降机理实验研究[J]. 钻井液与完井液,2019,36(03):378-383. doi: 10.3969/j.issn.1001-5620.2019.03.020LIU Jiankun, WU Zhiying, WU Chunfang, et al. Experimental study on the mechanism of sand suspension and settling of proppant in fracturing fluids[J]. Drilling Fluid & Completion Fliud, 2019, 36(03):378-383. doi: 10.3969/j.issn.1001-5620.2019.03.020 [15] ALOTAIBI M A, MISKIMINS J L . Slickwater proppant transport in complex fractures: new experimental findings & scalable correlation[C] SPE Annual Technical Conference and Exhibition, 2015. [16] 田雨. 组合裂缝中支撑剂运移铺置规律研究[D]. 中国石油大学(华东), 2018.TIAN Yu. Study on the migration and placement of proppant in combined fractures[D]. China University of Petroleum (East China), 2018. [17] 战永平,温庆志,段晓飞. 压裂支撑剂运移和铺置虚拟仿真装置的应用[J]. 实验室研究与探索,2016,35(6):74-76+82. doi: 10.3969/j.issn.1006-7167.2016.06.018ZHAN Yongping, WEN Qingzhi, DUAN Xiaofei. An application of the visual simulation experimental device of proppant transportation and placement in the fracture[J]. Research and exploration in laboratory, 2016, 35(6):74-76+82. doi: 10.3969/j.issn.1006-7167.2016.06.018 [18] BAIDURJA RAY, CHRIS LEWIS, VLADIMIR MARTYSEVICH, et al. An Investigation into Proppant Dynamics in Hydraulic Fracturing[C] SPE Hydraulic Fracturing Technology Conference and Exhibition, 2017. [19] WANG Hanyi , SHARMA M M. Modeling of hydraulic fracture closure on proppants with proppant settling[J]. Journal of Petroleum Science and Engineering, 2018, 171:636-645. [20] HAN J C. Turbine blade cooling studies at texas A&M university: 1980-2004[J]. Journal of thermophysics and heat transfer, 2006, 20(2):161-187. [21] 李鹏,苏建政,张岩,等. 单裂缝中携砂液流动规律研究[J]. 力学与实践,2017,39(2):135-144.LI Peng, SU Jianzheng, ZHANG Yan, et al. The two phase flow of proppant-laden fluid in a single fractuer[J]. Mechanics in engineering, 2017, 39(2):135-144. [22] LU Cong, MA Li , LI Zhili,et al. A novel hydraulic fracturing method based on the coupled CFD-DEM numerical simulation study[J]. Applied Sciences, 2020, 10(9):3027. [23] 杨思齐,樊建春,张来斌. 高压弯管压裂液两相流模拟及流固耦合分析[J]. 石油机械,2020,48(3):128-133.YANG Siqi, FAN Jianchun, ZHANG Laibin. Numerical simulation of two-phase flow and analysis of fluid-structure interaction of fracturing fluid in high pressure elbow.[J]. China Petroleum Machinery, 2020, 48(3):128-133. [24] 侯磊,Derek Elsworth,孙宝江,等. 页岩支撑裂缝中渗透率变化规律实验研究[J]. 西南石油大学学报(自然科学版),2015,37(3):31-37.HOU Lei, DEREK Elsworth, SUN Baojiang, et al. Experimental study on permeability evolution in propped shale fracture[J]. Journal of Southwest Petroleum University(Science & Technology Edition) , 2015, 37(3):31-37. [25] 张磊,刘安邦,钟亚军,等. 大规模滑溜水压裂参数优化研究与应用[J]. 非常规油气,2022,9(2):112-118.ZHANG Lei, LIU Anbang, ZHONG Yajun, et al. Research and application of parameter optimization for large-scale slick water fracturing[J]. Unconventional Oil & Gas, 2022, 9(2):112-118. [26] 袁海平,池晓明,陈飞,等. 纤维携砂压裂技术在鄂尔多斯盆地子洲气田盒8上的应用[J]. 非常规油气,2017,4(4):97-101+46. doi: 10.3969/j.issn.2095-8471.2017.04.016YUAN Haiping, CHI Xiaoming, CHEN Fei, et al. The Application of Fiber-assisted Transport Technique in He-8upper Member of Zizhou Gas Field[J]. Unconventional Oil & Gas, 2017, 4(4):97-101+46. doi: 10.3969/j.issn.2095-8471.2017.04.016 [27] 袁海平,池晓明,陈飞,等. 纤维携砂压裂技术在鄂尔多斯盆地子洲气田盒8上的应用[J]. 非常规油气,2017,4(4):97-101+46.YUAN Haiping, CHI Xiaoming, CHEN Fei, et al. The Application of Fiber-assisted Transport Technique in He-8upper Member of Zizhou Gas Field[J]. Unconventional Oil & Gas, 2017, 4(4):97-101+46. -