留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钻井液用包被剂对固井水泥浆体系的影响

赵殊勋 左天鹏 陈绪 郑怡杰 程小伟

赵殊勋,左天鹏,陈绪,等. 钻井液用包被剂对固井水泥浆体系的影响[J]. 钻井液与完井液,2022,39(3):359-364 doi: 10.12358/j.issn.1001-5620.2022.03.015
引用本文: 赵殊勋,左天鹏,陈绪,等. 钻井液用包被剂对固井水泥浆体系的影响[J]. 钻井液与完井液,2022,39(3):359-364 doi: 10.12358/j.issn.1001-5620.2022.03.015
ZHAO Shuxun, ZUO Tianpeng, CHEN Xu, et al.Effects of drilling fluid encapsulators on well cement slurries[J]. Drilling Fluid & Completion Fluid,2022, 39(3):359-364 doi: 10.12358/j.issn.1001-5620.2022.03.015
Citation: ZHAO Shuxun, ZUO Tianpeng, CHEN Xu, et al.Effects of drilling fluid encapsulators on well cement slurries[J]. Drilling Fluid & Completion Fluid,2022, 39(3):359-364 doi: 10.12358/j.issn.1001-5620.2022.03.015

钻井液用包被剂对固井水泥浆体系的影响

doi: 10.12358/j.issn.1001-5620.2022.03.015
详细信息
    作者简介:

    赵殊勋,1986年生,硕士, 高级工程师 ,现在主要从事固井工艺及固井液体系的研究工作。 电话 13920302703; E_mail:zhaoshuxun@cnpc.com.cn

  • 中图分类号: TE256

Effects of Drilling Fluid Encapsulators on Well Cement Slurries

  • 摘要: 针对钻井液与固井水泥浆相互接触时会使混浆流动性能变差的问题,实验研究了包被剂对固井水泥浆稠化时间、流变性能和抗压强度的影响。采用红外光谱、X射线衍射仪以及扫描电镜探究了包被剂对固井水泥浆的污染机理。同时利用电导率评价方法,比较了掺入包被剂前后固井水泥浆电导率的变化。研究结果表明,包被剂的掺入会降低水泥浆的流动度,当加量为0.6%时,水泥浆的流动度与纯水泥相比降低了52%;电导率实验分析表明,掺入包被剂后的水泥浆水化进行到12 h时,才进入加速期;包被剂的掺入降低了固井水泥浆水化的反应速率,延缓了其水化进程,从而导致固井水泥浆的抗压强度发展缓慢,在90 ℃养护条件下,掺量为0.2%时,其3 d强度与纯水泥相比降低了12.8%。包被剂中—OH、—CONH2、—COO-等具有吸附性能的官能团会吸附于水泥颗粒上,且包被剂中的亲水基团与固井水泥浆中的 Si—O 形成氢键,在水泥颗粒表面形成一层溶剂膜,阻碍了水与水泥颗粒的接触。

     

  • 图  1  水泥浆电导率测试系统和方法示意图

    图  2  掺入包被剂水泥浆的稠化曲线

    图  3  掺入包被剂后水泥浆的电导率曲线

    图  4  掺入包被剂后水泥浆的XRD衍射图谱

    图  5  包被剂的红外光谱

    图  6  掺入包被剂前后水泥石的红外光谱对比

    图  7  加入包被剂前后水泥石的扫描电镜图

    图  8  包被剂与水泥颗粒的关系示意图

    表  1  钻井液用包被剂对水泥浆性能的影响

    包被剂/
    %
    ρ/
    g·cm−3
    流动度/
    cm
    包被剂/
    %
    ρ/
    g·cm−3
    流动度/
    cm
    01.89250.41.8916
    0.21.89180.61.8912
    下载: 导出CSV

    表  2  包被剂对水泥石抗压强度的影响

    包被剂/%p3 d/MPap7 d/MPa
    60 ℃90 ℃60 ℃90 ℃
    013.9419.2823.2522.87
    0.2013.2516.8016.0719.00
    0.4012.9112.9615.8515.19
    0.6012.8015.5919.9813.72
    下载: 导出CSV
  • [1] 郑力会,鄢捷年,陈勉,等. 钻井液用仿磺化沥青防塌剂的性能与作用机理[J]. 油田化学,2005,22(2):97-100.

    ZHENG Lihui, YAN Jienian, CHEN Mian, et al. Performance properties and punctioning mechanisms of pseudo ssulfonated aasphalt as anticaving agent for water base drilling fluids[J]. Oilfield Chemistry, 2005, 22(2):97-100.
    [2] 郭丽梅,薛锦华,陈曦. 新型屏蔽暂堵剂ZDJ室内性能评价[J]. 钻井液与完井液,2016,33(1):37-41.

    GUO Limei, XUE Jinhua, CHEN Xi. Laboratory evaluation of a new temporary plugging agent ZDJ[J]. Drilling Fluid & Completion Fluid, 2016, 33(1):37-41.
    [3] WANG F, TAN X, WANG R, et al. High temperature and high pressure rheological properties of high-density water-based drilling fluids for deep wells[J]. PetroleumScience, 2012, 9(3):354-362.
    [4] 乔宁. 固井水泥浆与钻井液接触污染作用研究[J]. 中国石油和化工标准与质量,2019,39(10):115-116. doi: 10.3969/j.issn.1673-4076.2019.10.054

    QIAO Ning. Study on contact pollution of cement slurry and drilling fluid[J]. China Petroleum and Chemical Standard and Quality, 2019, 39(10):115-116. doi: 10.3969/j.issn.1673-4076.2019.10.054
    [5] 马勇,刘伟,唐庚,等. 川渝地区“三高”气田超深井固井隔离液应用实践[J]. 天然气工业,2010,30(6):77-79. doi: 10.3787/j.issn.1000-0976.2010.06.021

    MA Yong, LIU Wei, TANG Geng, et al. Application of spacer fluid for cementing ultra-deep walls in Sichuan and Chongqing "three highs" gas fields[J]. Natural Gas Industry, 2010, 30(6):77-79. doi: 10.3787/j.issn.1000-0976.2010.06.021
    [6] 郑友志,佘朝毅,姚坤全,等. 钻井液处理剂对固井水泥浆的污染影响[J]. 天然气工业,2015,35(4):76-81. doi: 10.3787/j.issn.1000-0976.2015.04.012

    ZHENG Youzhi, SHE Chaoyi, YAO Kunquan, et al. Contamination effects of drilling fluid additives on cement slurry[J]. Natural Gas Industr, 2015, 35(4):76-81. doi: 10.3787/j.issn.1000-0976.2015.04.012
    [7] 李明,王伟,郑友志,等. 单因素法分析钻井液处理剂对水泥浆性能的影响[J]. 石油与天然气化工,2014,43(3):297-301. doi: 10.3969/j.issn.1007-3426.2014.03.017

    LI Ming, WANG Wei, ZHENG Youzhi, et al. Impact of drilling fluid additives on performance of the cement slurry by single-factor[J]. Chemical Engineering of Oil & Gas, 2014, 43(3):297-301. doi: 10.3969/j.issn.1007-3426.2014.03.017
    [8] 刘慧婷,付家文,丛谧,等. 高强度低密度水泥石的微观结构和力学性能[J]. 硅酸盐通报,2020,39(11):3432-3438.

    LIU Huiting, FU Jiawen, CONG Mi, et al. Microstructure and mechanical properties of high strength low-density cement[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(11):3432-3438.
    [9] 艾丽,李早元,谢飞燕,等. 常见无机盐对油井水泥石抗压强度的影响机理[J]. 钻井液与完井液,2012,29(4):63-66. doi: 10.3969/j.issn.1001-5620.2012.04.018

    AI Li, LI Zaoyuan, XIE Feiyan, et al. State key laboratory of oil and gas reservoir geology and exploitation southwest petroleum university[J]. Drilling Fluid & Completion Fluid, 2012, 29(4):63-66. doi: 10.3969/j.issn.1001-5620.2012.04.018
    [10] MCCARTER W J, CHRISP T M, STARRS G, et al. Characterization of physio-chemical processes and hydration kinetics in concretes containing supplementary cementitious materials using electrical property measurements[J]. Cement & Concrete Research, 2013, 50(7):26-33.
    [11] MCCARTER W J, CHRISP T M, STARRS G. The early hydration of alkali-activated slag: developments in monitoring techniques[J]. Cement & Concrete Composites, 1999, 21(4):277-283.
    [12] 李明,杨雨佳,张冠华,等. 钻井液中生物增黏剂对固井水泥浆性能及结构的影响[J]. 天然气工业,2014,34(9):93-98. doi: 10.3787/j.issn.1000-0976.2014.09.015

    LI Ming, YANG Yujia, ZHANG Guanhua, et al. Impact of a biological tackifier in a drilling fluid system on the performance and structure of a cement slurry[J]. Natural Gas Industry, 2014, 34(9):93-98. doi: 10.3787/j.issn.1000-0976.2014.09.015
    [13] 杨念,况守英,岳蕴辉. 几种常见无水碳酸盐矿物的红外吸收光谱特征分析[J]. 矿物岩石,2015,35(4):37-42.

    YANG Nian, KUANG Shouying, YUE Yunhui. Infrared spectra analysis of several common anhydrous carbonate minerals[J]. Journal of Mineralogy and Petrology, 2015, 35(4):37-42.
    [14] ZHANG Z D, SCHERER G W, GEORGE W, et al. Morphology of cementitious material during early hydration[J]. Cement and Concrete Research, 2018:85-100.
    [15] 张栋,吴文祥,任佳潍,等. Ca2+与Mg2+对聚合物黏度影响及其增黏方法[J]. 大庆石油地质与开发,2016,35(1):105-108. doi: 10.3969/J.ISSN.1000-3754.2016.01.021

    ZHANG Dong, WU Wenxiang, REN Jiawei, et al. Influences of Ca2+ and Mg2+ on the viscosity of the polymer solution and thickening method[J]. Petroleum Geology & Oilfield Development in Daqing, 2016, 35(1):105-108. doi: 10.3969/J.ISSN.1000-3754.2016.01.021
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  514
  • HTML全文浏览量:  196
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-05
  • 修回日期:  2022-02-25
  • 刊出日期:  2022-05-30

目录

    /

    返回文章
    返回