Synthesis and Study of an Ultra-High Temperature Filtrate Reducer for Cement Slurries
-
摘要: 为实现超深井与复杂井超高温固井水泥浆体系的构建目标,突破常规固井水泥浆降失水剂的超高温控失水瓶颈,研制开发了超高温水泥浆降失水剂F-SHT,并对其进行了结构表征与性能评价。结果表明,F-SHT的数均分子量为21 475 Da,表观黏度低,不影响水泥浆的配制;在温度达到294 ℃时开始发生明显热失重,表明其分子链热稳定性良好;有效控失水温度可达240 ℃且可抗饱和盐水,采用水泥浆静态失水量评价方法,测得240 ℃/6.9 MPa下饱和盐水水泥浆API失水量为38 mL。测试了F-SHT在水泥浆体系中的综合性能,停开机、稳定性与API失水评价结果均合格。F-SHT在河探1井Φ177.8 mm尾管固井中成功应用,结果表明F-SHT现场适应性良好,固井质量良好,同时为超深层油气资源的勘探开发提供了有力支撑。Abstract: An ultra-high temperature filtrate reducer, F-SHT, was developed for formulating cement slurries used in ultra-deep wells and complex wells with ultra-high well temperatures. The development of F-SHT has broken through the bottleneck of ultra-high temperature water loss control of conventional filter loss reducers for cement slurries. Characterization of the molecular structure and performance evaluation of F-SHT showed that F-SHT has a number average molecular weight of 21,475 Da and low apparent viscosity which is benefit to the formulation of cement slurries. Significant thermal weight loss occurred when the temperature reaches 294 ℃, indicating that the molecular chains of F-SHT has good thermal stability. F-SHT can effectively control the fluid loss of cement slurries at temperatures up to 240 ℃ and in salt-saturated cement slurries. In static filtration test, a salt-saturated cement slurry treated with F-SHT had API filtration rate of 38 mL at 240 ℃/6.9 MPa. In general performance testing, the performance of the cement slurry at starting and halting of the machine, the stability and API filtration rate of the cement slurry were all qualified. In cementing the Φ177.8 mm liner string of the well Heshen-1, F-SHT performed successfully; the cement slurry best suited the situation of the well condition, the quality of the well cementing job was good, and the well cementing job provided a strong support to the exploration of oil and gas resources buried in ultra-deep formations.
-
表 1 掺有F-SHT的水泥浆的流变参数
F-SHT/
%T/
℃φ3/φ6/φ100/φ200/φ300/φ600 n K/
Pa·sn0 60 14.0/18.0/103.5/128.5/151/179.5 0.393 6.360 0 90 17.5/24.0/135.5/149.5/165/178.0 0.352 9.335 3 60 1.5/3.0/46.2/87.7/125/216.0 0.830 0.353 4 90 6.0/9.2/74.0/129.5/178/290.5 0.741 0.879 5 240 3.5/6.5/101.0/185.5/258/>300.0 0.854 0.646 表 2 掺有F-SHT的高温水泥浆的综合性能
F-SHT/
%T/
℃P/
MPat下灰/
s稠化性能
(有无包心)停开机
稠度/Bc△ρ/
g·cm−3FLAPI/
mL3.5 120 60 16 无包心 20→27 0.025 46 4.0 150 70 24 微小包心 18→23 0.020 38 4.5 180 80 28 无包心 9→10 0.030 34 5.0 200 90 35 无包心 11→17 0.025 30 5.0 220 100 36 无包心 8→13 0.035 33 5.0 240 100 41 无包心 16→24 0.040 34 -
[1] 潘继平. “十四五”油气增储上产的政策困境及对策建议[J]. 石油科技论坛,2021,40(1):7-14. doi: 10.3969/j.issn.1002-302x.2021.01.002PAN Jiping. Policy bottlenecks for increasing oil and gas reserves and production in 14th five-year plan period and suggestions on countermeasures[J]. Oil Forum, 2021, 40(1):7-14. doi: 10.3969/j.issn.1002-302x.2021.01.002 [2] 杜金虎,赵邦六,王喜双,等. 中国石油物探技术攻关成效及成功做法[J]. 中国石油勘探,2011,16(S1):1-7.DU Jinhu, ZHAO Bangliu, WANG Xishuang, et al. Achievements and successful experience of PetroChina in geophysical research[J]. China Petroleum Exploration, 2011, 16(S1):1-7. [3] 罗晓容,张立宽,雷裕红,等. 储层结构非均质性及其在深层油气成藏中的意义[J]. 中国石油勘探,2016,21(1):28-36. doi: 10.3969/j.issn.1672-7703.2016.01.003LUO Xiaorong, ZHANG Likuan, LEI Yuhong, et al. Structural heterogeneity of reservoirs and its implication on hydrocarbon accumulation in deep zones[J]. China Petroleum Exploration, 2016, 21(1):28-36. doi: 10.3969/j.issn.1672-7703.2016.01.003 [4] 刘学鹏,刘仍光. 油井水泥降失水剂的作用机理研究[J]. 化学研究与应用,2017,29(12):1928-1932. doi: 10.3969/j.issn.1004-1656.2017.12.027LIU Xuepeng, LIU Rengguang. Mechanisms involved in fluid loss control of oilwell cement slurries by water-soluble polymer[J]. Chemical Research and Application, 2017, 29(12):1928-1932. doi: 10.3969/j.issn.1004-1656.2017.12.027 [5] 卢甲晗,袁永涛,李国旗,等. 油井水泥抗高温抗盐降失水剂的室内研究[J]. 钻井液与完井液,2005,22(S1):67-68.LU Jiahan, YUAN Yongtao, LI Guoqi, et al. Study and application of a high temperature and salt resisting cement slurry system[J]. Drilling Fluid & Completion Fluid, 2005, 22(S1):67-68. [6] 邹建龙,屈建省,吕光明,等. 新型固井降失水剂BXF-200L的研制与应用[J]. 钻井液与完井液,2005,22(2):20-23. doi: 10.3969/j.issn.1001-5620.2005.02.006ZOU Jianlong, QU Jiansheng, LYU Guangming, et al. A novel fluid loss additive BXF-200L for oilfield cement and its application[J]. Drilling Fluid & Completion Fluid, 2005, 22(2):20-23. doi: 10.3969/j.issn.1001-5620.2005.02.006 [7] 于永金,刘硕琼,刘丽雯,等. 高温水泥浆降失水剂DRF-120L的制备及评价[J]. 石油钻采工艺,2011,33(3):24-27. doi: 10.3969/j.issn.1000-7393.2011.03.007YU Yongjin, LIU Shuoqiong, LIU Liwen, et al. Preparation and evaluation of high temperature cement slurry loss reduction additive DRF-120L[J]. Oil Drilling & Production Technology, 2011, 33(3):24-27. doi: 10.3969/j.issn.1000-7393.2011.03.007 [8] 夏修建,于永金,靳建洲,等. 耐高温抗盐固井降失水剂的制备及性能研究[J]. 钻井液与完井液,2019,36(5):610-616. doi: 10.3969/j.issn.1001-5620.2019.05.015XIA Xiujian, YU Yongjin, JIN Jianzhou, et al. Preparation and performance of a high temperature resistant and salt-resistant fluid loss additive for cementing[J]. Drilling Fluid & Completion Fluid, 2019, 36(5):610-616. doi: 10.3969/j.issn.1001-5620.2019.05.015 [9] 郭锦棠,喻文娟,肖淼,等. 海水水泥浆体系降失水剂LTF-100L的合成及性能[J]. 石油化工,2016,45(8):988-993. doi: 10.3969/j.issn.1000-8144.2016.08.017GUO Jintang, YU Wenjuan, XIAO Miao, et al. Synthesis and properties of LTF-100L fluid loss additive available in seawater-based cement slurry system[J]. Petrochemical Technology, 2016, 45(8):988-993. doi: 10.3969/j.issn.1000-8144.2016.08.017 [10] 李晓岚,郑志军,郭鹏. 高温油井水泥降失水剂ZFA-1的合成及性能[J]. 钻井液与完井液,2020,37(2):209-213. doi: 10.3969/j.issn.1001-5620.2020.02.013LI Xiaolan, ZHENG Zhijun, GUO Peng. Synthesis and performance of high temperature filter loss reducer ZFA-1 for oil well cement slurries[J]. Drilling Fluid & Completion Fluid, 2020, 37(2):209-213. doi: 10.3969/j.issn.1001-5620.2020.02.013 [11] 李皋,付强,余杭航,等. 四元共聚抗高温抗盐油井水泥浆降失水剂的合成[J]. 天然气工业,2018,38(12):96-101. doi: 10.3787/j.issn.1000-0976.2018.12.011LI Gao, FU Qiang, YU Hanghang, et al. Synthesis and performance evaluation of quadripolymer as a temperature and salt-resistance oil well cement filtrate reducer[J]. Natural Gas Industry, 2018, 38(12):96-101. doi: 10.3787/j.issn.1000-0976.2018.12.011 [12] WANG Fang, KONG Xiangming, WANG Dongmin, et al. The effects of nano-C-S-H with different polymer stabilizers on early cement hydration[J]. Journal of the American Ceramic Society, 2019, 102(9):1-14. [13] 韩亮,唐欣,杨远光,等. 新型两性离子固井降失水剂的合成与性能评价[J]. 钻井液与完井液,2018,35(2):85-91. doi: 10.3969/j.issn.1001-5620.2018.02.014HAN Liang, TANG Xin, YANG Yuanguang, et al. Synthesis and evaluation of a new amphoteric filter loss reducer for cement slurry[J]. Drilling Fluid & Completion Fluid, 2018, 35(2):85-91. doi: 10.3969/j.issn.1001-5620.2018.02.014 -