留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温高密度防腐水泥浆加重剂研究

武中涛 宋建建 刘卫红 赵军 许明标 王晓亮

武中涛,宋建建,刘卫红,等. 高温高密度防腐水泥浆加重剂研究[J]. 钻井液与完井液,2022,39(3):346-351 doi: 10.12358/j.issn.1001-5620.2022.03.013
引用本文: 武中涛,宋建建,刘卫红,等. 高温高密度防腐水泥浆加重剂研究[J]. 钻井液与完井液,2022,39(3):346-351 doi: 10.12358/j.issn.1001-5620.2022.03.013
WU Zhongtao, SONG Jianjian, LIU Weihong, et al.Study on selection of weighting agent for hhigh-ttemperature and high-density anticorrosive cement slurry[J]. Drilling Fluid & Completion Fluid,2022, 39(3):346-351 doi: 10.12358/j.issn.1001-5620.2022.03.013
Citation: WU Zhongtao, SONG Jianjian, LIU Weihong, et al.Study on selection of weighting agent for hhigh-ttemperature and high-density anticorrosive cement slurry[J]. Drilling Fluid & Completion Fluid,2022, 39(3):346-351 doi: 10.12358/j.issn.1001-5620.2022.03.013

高温高密度防腐水泥浆加重剂研究

doi: 10.12358/j.issn.1001-5620.2022.03.013
基金项目: 国家科技重大专项“海外复杂地层固井及修井液技术”(2017ZX05032004-004)
详细信息
    作者简介:

    武中涛,男,在读硕士研究生,1997年生,现主要从事固井水泥浆技术研究工作。E-mail:1489796596@qq.com

    通讯作者:

    宋建建,博士,现主要从事固井技术方面研究工作。E-mail:songjian629@yangtzeu.edu.cn

  • 中图分类号: TE256.6

Study on Selection of Weighting Agent for Hhigh-Ttemperature and High-Density Anticorrosive Cement Slurry

  • 摘要: 针对富含CO2的高温高压油气井中水泥环的腐蚀问题,进行了高温高密度防腐水泥浆体系加重剂的研究,并对比了相同粒度的锰矿粉、赤铁矿和重晶石3种加重剂对水泥浆性能的影响,在150 ℃、CO2分压20 MPa的环境下进行了腐蚀实验。研究结果表明,锰矿粉水泥浆需水量最少,相同条件下具有较好的流变性和较低的失水量;锰矿粉水泥石腐蚀后渗透率最小,抗压强度较高;腐蚀30 d后,锰矿粉水泥石腐蚀深度最低,重晶石水泥石的腐蚀深度约为锰矿粉水泥石的1.5倍;腐蚀后锰矿粉水泥石结构最致密,腐蚀后生成物的特征峰最低;锰矿粉加量为25%、50%和75%的3种水泥石腐蚀27 d后,加量为50% 的水泥石腐蚀深度最小。与赤铁矿和重晶石相比,锰矿粉为较好的选择,但加量过多时会对水泥浆防腐蚀性能产生不利影响。

     

  • 图  1  腐蚀时间对不同水泥石抗压强度的影响

    图  2  不同水泥石腐蚀30 d剖面图

    图  3  腐蚀深度变化图

    图  4  水泥石腐蚀30 d腐蚀层XRD图

    图  5  水泥石腐蚀30 d后腐蚀层的SEM图

    图  6  不同加重剂对水泥石性能腐蚀的影响

    图  7  不同加重剂下水泥石腐蚀27 d剖面图

    表  1  实验过程中使用的水泥浆配方

    配方编号各组分加量/%
    缓凝剂分散剂锰矿粉赤铁矿重晶石
    MC500.52.550
    FC500.52.550
    BC500.52.550
    JPC
    JMC50
    JFC50
    JBC50
    MC250.52.525
    MC750.52.575
    下载: 导出CSV

    表  2  加重剂对水泥浆常规性能的影响

    配方ρ/(g·cm−3φ300φ200φ100φ6φ3FLAPI/mLΔρ/(g·cm−3
    MC502.192251507542620.14
    FC502.2025211553920.09
    BC502.1620496421060.06
    下载: 导出CSV

    表  3  不同水泥石腐蚀前后的渗透率

    水泥石渗透率/mD
    未腐蚀腐蚀36 d
    锰矿粉0.00850.0104
    铁矿粉0.00960.0216
    重晶石0.00530.0139
    下载: 导出CSV
  • [1] 张景富,徐明,朱健军,等. 二氧化碳对油井水泥石的腐蚀[J]. 硅酸盐学报,2007(12):1651-1656. doi: 10.3321/j.issn:0454-5648.2007.12.018

    ZHANG Jingfu, XU Ming, ZHU Jianjun, et al. Corrosion of oil well cement by carbon dioxide[J]. Journal of the Chinese Ceramic Society, 2007(12):1651-1656. doi: 10.3321/j.issn:0454-5648.2007.12.018
    [2] SILVA J C, MILESTONE N B. Cement/rock interaction in geothermal wells. The effect of silica addition to the cement and the impact of CO2 enriched brine[J]. Geothermics, 2018, 73:16-31. doi: 10.1016/j.geothermics.2018.01.004
    [3] 黄柏宗,谢承斌,蔡久能. 深井固井的若干问题[J]. 钻井液与完井液,2003(5):51-54.

    HUANG Bozong, XIE Chengbin, CAI Jiuneng. Some problems of deep well cementing[J]. Drilling Fluid & Completion Fluid, 2003(5):51-54.
    [4] 赵密锋,付安庆,秦宏德,等. 高温高压气井管柱腐蚀现状及未来研究展望[J]. 表面技术,2018,47(6):44-50.

    ZHAO Mifeng, FU Anqing, QIN Hongde, et al. Overview and future research prospect of tubing string corrosion of high pressure and high temperature gas well[J]. Surface Technology, 2018, 47(6):44-50.
    [5] 谢仁军,吴怡,袁俊亮,等. 南海超高温高压气田开发钻完井技术可行性评估与关键技术研究[J]. 中国海上油气,2021,33(5):122-129.

    XIE Renjun, WU Yi, YUAN Junliang, et al. Technical feasibility evaluation and key technologies study of drilling and completion for development of UHTHP gas fields in South China Sea[J]. China Offshore Oil and Gas, 2021, 33(5):122-129.
    [6] WANG D, NOGUCHI T, NOZAKI T, et al. Investigation of the carbonation performance of cement-based materials under high temperatures[J]. Construction and Building Materials, 2020, 272:121634.
    [7] JANI P, IMQAM A. Class C fly ash-based alkali activated cement as a potential alternative cement for CO2 storage applications[J]. Journal of Petroleum Science and Engineering, 2021, 201:108408. doi: 10.1016/j.petrol.2021.108408
    [8] MARTA K S, SANTOS L M D, PATRICIA M C, et al. Evaluation of CO2 attack in wellbore class G cement: influence of epoxy resins, composites and minerals as additives[J]. Greenhouse Gases:Science and Technology, 2019, 9(6):261-268.
    [9] 杨雪. 矿渣抗腐蚀水泥的性能评价[J]. 科学技术与工程,2012,12(6):1390-1392,1396. doi: 10.3969/j.issn.1671-1815.2012.06.040

    YANG Xue. Performance evaluation of slag corrosion resistant cement[J]. Science Technology and Engineering, 2012, 12(6):1390-1392,1396. doi: 10.3969/j.issn.1671-1815.2012.06.040
    [10] 陆沛青,刘仍光,杨广国,等. 增强油井水泥石抗二氧化碳腐蚀方法[J]. 材料科学与工程学报,2020,38(4):566-570.

    LU Peiqing, LIU Rengguang, YANG Guangguo, et al. Methods of strengthening anti-CO2 corrosion of oil well cement stone[J]. Journal of Materials Science and Engineering, 2020, 38(4):566-570.
    [11] CARITEY J P, BRADY J. Performance of thermal cements with different weighting materials[C]// Society of Petroleum Engineers. Society of Petroleum Engineers, 2013.
    [12] AHMED A, MADMOUD A A, ELKATATNY S, et al. The Effect of Weighting Materials on Oil-Well Cement Properties While Drilling Deep Wells[J]. Sustainability, 2019, 11(23):6676. doi: 10.3390/su11236676
    [13] 王成文,王桓,薛毓铖,等. 高密度水泥浆高温沉降稳定调控热增黏聚合物研制与性能[J]. 石油学报,2020,41(11):1416-1424. doi: 10.7623/syxb202011011

    WANG Chengwen, WANG Heng, XUE Yucheng, et al. Development and performance of thermo-viscosifying polymer for high temperature sedimentation control of high density cement slurry[J]. Acta Petrolei Sinica, 2020, 41(11):1416-1424. doi: 10.7623/syxb202011011
    [14] 刘崇建, 黄柏宗, 徐同台, 等. 油气井注水泥理论与应用[M]. 石油工业出版社, 2001: 63-64.

    LIU Chongjian, HUANG Bozong, XU Tongtai, et al. Theory and application of cementing in oil and gas wells[M]. Petroleum industry press, 2001: 63-64.
    [15] BX A, BY A, YW A, et al. Nanosilica-latex reduction carbonation-induced degradation in cement of CO2 geological storage wells[J]. Journal of Natural Gas Science and Engineering, 2019, 65:237-247. doi: 10.1016/j.jngse.2019.03.013
    [16] OMOSEBI O, MAHESHWARI H, AHMED R, et al. Degradation of well cement in HPHT acidic environment: Effects of CO2 concentration and pressure[J]. Cement & Concrete Composites, 2016, 74:54-70.
    [17] FUMIAKI M, YOSHIMICHI A, SUMIO S. Calcium silicate structure and carbonation shrinkage of a tobermorite-based material[J]. Cement & Concrete Research, 2004, 34(7):1251-1257.
    [18] COSTA B L S. FREITAS J C O, ARAUJO R G S, et al. Analysis of different oil well cement slurry formulations exposed to a CO2-rich environment[J]. Journal of CO2 Utilization, 2021, 51:101636. doi: 10.1016/j.jcou.2021.101636
    [19] R BJØRGE, GAWEL K, PANDURO E C, et al. Carbonation of silica cement at high-temperature well conditions[J]. International Journal of Greenhouse Gas Control, 2019, 82:261-268. doi: 10.1016/j.ijggc.2019.01.011
    [20] NIKOLAOS, KOUKOUZAS, ZACHARENIA, et al. Geochemical modeling of carbonation of hydrated oil well cement exposed to CO2-saturated brine solution[J]. Applied Geochemistry, 2017, 85(A):35-48.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  543
  • HTML全文浏览量:  252
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-25
  • 修回日期:  2022-02-23
  • 刊出日期:  2022-05-30

目录

    /

    返回文章
    返回