留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地聚物基油气井固泥材料

孙刚 王有伟 刘鑫军 于斌 张国梁 马春风 李屹 汤栋霖

孙刚,王有伟,刘鑫军,等. 地聚物基油气井固泥材料[J]. 钻井液与完井液,2022,39(3):339-345 doi: 10.12358/j.issn.1001-5620.2022.03.012
引用本文: 孙刚,王有伟,刘鑫军,等. 地聚物基油气井固泥材料[J]. 钻井液与完井液,2022,39(3):339-345 doi: 10.12358/j.issn.1001-5620.2022.03.012
SUN Gang, WANG Youwei, LIU Xinjun, et al.A geopolymer based oil and gas well cementing material[J]. Drilling Fluid & Completion Fluid,2022, 39(3):339-345 doi: 10.12358/j.issn.1001-5620.2022.03.012
Citation: SUN Gang, WANG Youwei, LIU Xinjun, et al.A geopolymer based oil and gas well cementing material[J]. Drilling Fluid & Completion Fluid,2022, 39(3):339-345 doi: 10.12358/j.issn.1001-5620.2022.03.012

地聚物基油气井固泥材料

doi: 10.12358/j.issn.1001-5620.2022.03.012
基金项目: 国家科技重大专项课题“复杂地质条件下深井钻井液与高温高压固井技术研究”(2011ZX05021-004)
详细信息
    作者简介:

    孙刚,工程师,1978年生,毕业于挪威斯塔万格大学工业经济专业,现在从事钻井液生产作业组织管理工作。电话 (010)84523340;E-mail:sungang@cosl.com.cn

    通讯作者:

    汤栋霖,电话 18078851330;E-mail:msdltang@scut.edu.cn

  • 中图分类号: TE256.6

A Geopolymer Based Oil and Gas Well Cementing Material

  • 摘要: 地聚物是一类由碱激发剂和胶凝材料制备而成的、由SiO4和AlO4四面体单元组成的具有三维立体网状结构的无机聚合物材料。该类材料具有力学性能优异、与无机基材黏结强度高和流动性良好等特点。针对油气井中残余的泥饼导致水泥浆无法有效黏结“固井二界面”的问题,通过添加偏高岭土MK与油井钻井液中的黏土同构地聚物达成油井固泥效果。通过水玻璃和偏高岭土制备了低黏度、高渗透率的地聚物基固泥材料。该地聚物基固泥材料的玻璃模数为1.5,MK添加量为2.5%,其在常压和高压环境下均能渗入泥饼;经90 ℃固化10 h后泥饼的抗压强度分别为3.0 MPa和1.0 MPa;同时,固化后的泥饼能提高固井二界面的胶结性能,“地层-水泥”界面和“套管-水泥”界面的胶结强度分别为0.6和1.0 MPa。X射线衍射分析结果表明,MK的加入虽然无法改变最终固化后泥饼的结晶性能,但适量加入MK能提高胶凝材料的含量,从而进一步提高固化后泥饼的抗压强度和胶结强度。

     

  • 图  1  套管界面胶结强度模拟测试实拍图

    图  2  WM0、WM2.5黏度随模数的变化

    图  3  高压下WM0渗入固化泥饼后的抗压强度

    图  4  高压下WM2.5渗入固化泥饼后的抗压强度

    图  5  泥饼的强度随温度变化情况

    图  6  纯泥饼、WM0、WM2.5固化泥饼的黏结强度

    图  7  “井壁-水泥”界面纯泥饼、WM0、WM2.5固化泥饼的黏结强度

    图  8  泥饼、固化后的泥饼X射线衍射曲线

    图  9  固化后的泥饼显微放大形貌图(放大150倍)

    表  1  泥饼成分分析结果

    成分含量/%成分含量/%
    BaO59.18Fe2O30.52
    SO336.32CaO0.49
    SiO22.41Al2O30.46
    SrO0.58*LOI3.01
      注:*LOI为烧失量
    下载: 导出CSV
  • [1] CHAAUDHURY M K. Complex fluids: Spread the world about nanofluids[J]. Nature, 2003, 423(10):131-132.
    [2] ABDO J, HANEEF D M. Nano-enhanced drilling fluids: Pioneering approach to overcome uncompromising drilling problems[J]. Journal of Energy Resources Technology, 2012, 13(4):1-6.
    [3] 蔚宝华,卢晓峰,王炳印,等. 高温井地层温度变化对井壁稳定性影响规律研究[J]. 钻井液与完井液,2004,21(6):15-18. doi: 10.3969/j.issn.1001-5620.2004.06.005

    WEI Baohua, LU Xiaofeng, WANG Bingyin, et al. Law of temperature influence on weilbore stability in hot well[J]. Drilling Fluid & Completion Fluid, 2004, 21(6):15-18. doi: 10.3969/j.issn.1001-5620.2004.06.005
    [4] 刘立新,杜俊涛,刘顺平,等. 耐高温钻井液降黏剂St/AMPS/AA的研制[J]. 钻井液与完井液,2012,29(2):18-20.

    LIU Lixin, DU Juntao, LIU Shunping, et al. Research on high temperature drilling fluid thinner St/AMPS/AA[J]. Drilling Fluid & Completion Fluid, 2012, 29(2):18-20.
    [5] 董兵强,邱正松,陆朝晖,等. 临兴区块致密砂岩气储层损害机理及钻井液优化[J]. 钻井液与完井液,2018,35(6):65-70. doi: 10.3969/j.issn.1001-5620.2018.06.012

    DONG Bingqiang, QIU Zhengsong, LU Chaohui, et al. Damage mechanisms determination for tight sands gas reservoir in block Linxing and drill-in fluid optimization for protection of the reservoir[J]. Drilling Fluid & Completion Fluid, 2018, 35(6):65-70. doi: 10.3969/j.issn.1001-5620.2018.06.012
    [6] 熊勇, 熊朝柱. 用于复杂井况下快速起钻的钻杆刮泥器及其刮泥方法: 中国, CN111441746A[P]. 2013-01-09.

    XIONG Yong, XIONG Chaozhu. Drill pipe mud scraper and mud scraping method for quick tripping under complex well conditions: China, CN111441746A[P], 2013-01-09.
    [7] 杨振杰,叶海超,龚保强,等. 固井液与多功能钻井液泥饼整体固化胶结的可行性探讨[J]. 钻井液与完井液,2002,19(5):1-7. doi: 10.3969/j.issn.1001-5620.2002.05.001

    YANG Zhenjie, YE Haichao, GONG Baoqiang, et al. Feasibility of integrated solidification and cementation of cementing fluid with mud cake from multifunctional drilling fluid[J]. Drilling Fluid & Completion Fluid, 2002, 19(5):1-7. doi: 10.3969/j.issn.1001-5620.2002.05.001
    [8] 梅雨堃,李明,刘璐,等. 提高二界面胶结质量的矿渣钻井液滤饼可固化技术[J]. 钻井液与完井液,2016,33(1):68-32.

    MEI Yukun, LI Ming, LIU Lu, et al. Solidification of slag mud cake that improves cementation quality of the second bonding interface[J]. Drilling Fluid & Completion Fluid, 2016, 33(1):68-32.
    [9] 杜建平,顾军,张辉,等. 有效提高页岩气井固井质量的泥饼固化防窜固井技术[J]. 天然气工业,2015,35(9):89-94. doi: 10.3787/j.issn.1000-0976.2015.09.013

    DU Jianping, GU Jun, ZHANG Hui, et al. Mud cake solidification technology for improving cementing quality of shale gas wells[J]. Natural Gas Industry, 2015, 35(9):89-94. doi: 10.3787/j.issn.1000-0976.2015.09.013
    [10] GU J, GAN P, DONG L, et al. Prediction of water channeling along cement-aquifuge interface in CBM well: Model development and experimental verification[J]. Journal of Petroleum Science and Engineering, 2018, 17(173):55-60.
    [11] GU J, HUANG J, HAO H. Influence of mud cake solidification agents on thickening time of oil well cement and its solution[J]. Construction and Building Materials, 2017, 153(30):327-336.
    [12] DUXSON P, PROVIS J L, LUKEY G C, et al. Geopolymer technology: the current state of the art[J]. Journal of Materials Science, 2007, 42(9):2917-2933. doi: 10.1007/s10853-006-0637-z
    [13] 胡志超,张长森,顾薛苏,等. 苯丙乳液/偏高岭土基地聚合物的制备与耐高温性能[J]. 混凝土,2020,373(11):67-71. doi: 10.3969/j.issn.1002-3550.2020.11.015

    HU Zhichao, ZHANG Changsen, GU Xuesu, et al. Preparation and high temperature resistance of styrene-acrylate emulsion/metakaolin-based geopolymers[J]. Concrete, 2020, 373(11):67-71. doi: 10.3969/j.issn.1002-3550.2020.11.015
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  519
  • HTML全文浏览量:  197
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-10
  • 修回日期:  2022-01-30
  • 网络出版日期:  2022-08-10
  • 刊出日期:  2022-05-30

目录

    /

    返回文章
    返回