Research and Application of Triassic Anti-collapse Drilling Fluid in Yueman Block on The South Bank of Tahe River
-
摘要: 针对塔河南岸跃满区块三叠系井段井壁垮塌严重的问题,对井壁失稳机理及防塌钻井液体系研究。三叠系地层岩性为泥岩和砂泥岩,黏土矿物含量为28.6%,黏土矿物中伊蒙混层含量45%,岩石吸水后抗压强度下降,现场钻井液密度低于井壁坍塌压力当量密度,这些是井壁坍塌的主要内因。现场钻井液滤失量大、泥饼厚而韧性差,岩屑滚动回收率和线性防膨率低,封堵性差,固相颗粒粒径分布不合理,这些是井壁坍塌的主要外因。通过优选降滤失剂、复合防塌抑制剂,引入防塌封堵剂FTDA等研究出防塌钻井液体系。该体系API滤失量和高温高压滤失量低,泥饼薄而且韧性好;岩屑滚动回收率比现用体系提高15.7%,对砂盘的封堵性提高50%以上。现场应用时钻井液流变性稳定,滤失量低,无卡钻、无掉块现象,平均井径扩大率为10.35%,比该区块平均井径扩大率下降50.24%。该体系的应用为跃满区块三叠系井壁稳定提供一种新的技术思路。Abstract: Studies on the mechanisms of borehole wall collapse and the drilling fluid capable of controlling the borehole wall collapse were performed to solve the problem of bad borehole wall collapse happening in drilling the Triassic System in the Yueman block, south bank of Tarim river. The Triassic System is mainly composed of mudstones and sandy mudstones containing 28.6% clay minerals in which 45% is the mixed layer of illite and montmorillonite. When in contact with water the formation rocks absorb the water, and the compressive strength of the rocks decreases. On the other hand, the density of the drilling fluid used is less than the equivalent density calculated from the collapse pressure of the formations. These are the the immanent causes resulting in borehole wall collapse. In field operation, the drilling fluid used had high filtration rate, leaving a thick mud cake with poor toughness. Laboratory test with the drilling fluid showed that the percent recovery of shale cuttings is low, while the linear expansion rate is high. Other shortages of the drilling fluid include poor plugging capacity and bad particle size distribution. A new drilling fluid was formulated based on these findings using optimized filter loss reducers, compound inhibitive additives such as FTDA. This drilling fluid has low API and HTHP filtration rates, and the mud cake is thin and tough. The percent recovery of shale cuttings with this drilling fluid was increased by 15.7% compared with the old mud. Plugging test on sand-bed showed that the plugging capacity of the new drilling fluid was increased by at least 50%, indicating that the drilling fluid has reasonable particle size distribution. In field application, the new drilling fluid had stable rheology and low filtration rate, no pipe sticking and borehole sloughing were encountered. The average rate of hole enlargement was 10.35%, which is 50.24% lower than the average rate of hole enlargement of the wells drilled in the same block. The application of the new drilling fluid has provided a new technical clue for stabilizing the borehole wall of the wells penetrating the Triassic System in the Yueman block.
-
表 1 复合封堵剂A对钻井液性能影响(120 ℃、16 h)
封堵剂A/
%AV/
mPa·sPV/
mPa·sYP/
Paφ6/
φ3Gel/
Pa/PaFL/
mLh1/
mmFLHTHP/
mLh2/
mm31.0 25.0 6.0 3/2 3/5 2.3 0.5 7.3 1.5 0.5 30.0 25.0 5.0 3/2 3/5 1.9 0.5 7.3 1.5 1.0 31.0 25.0 6.0 3/2 3/6 2.0 0.5 7.1 1.5 1.5 30.0 25.0 5.0 3/2 3/5 1.8 0.5 6.7 1.5 表 2 优化后钻井液和现场钻井液基本性能
钻井液 AV/mPa·s PV/mPa·s YP/Pa φ6/φ3 Gel/(Pa/Pa) FL/mL h1/mm FLHTHP/mL h2/mm Kf 优化后 35.0 26.0 9.0 4/3 4/7 1.6 0.5 5.8 1.5 0.0787 跃满区块3-H9井 33.0 26.0 7.0 4/3 4/7 9.0 3.0 10.6 5.0 0.1139 表 3 三叠系井段钻井液性能
井深/
mAV/
mPa·sPV/
mPa·sYP/
Paφ6/φ3 Gel/
Pa/PaFL/h1
mL/mmFLHTHP/h2
mL/mm3397 25.5 19.0 6.5 2/1 1/4.5 4.8/0.8 9.6/3.0 3558 25.5 19.0 6.5 2/1 1/5.0 4.4/0.5 9.2/2.0 3824 27.0 20.0 7.0 2/1 1/5.0 4.1/0.5 9.0/2.0 3936 27.0 20.0 7.0 2/1 1/5.0 3.8/0.5 8.6/1.5 4106 27.0 21.0 6.0 2/1 1/5.0 3.2/0.5 8.3/1.5 4150 27.0 21.0 6.0 2/1 1/5.0 3.3/0.5 8.3/1.5 注:钻井液密度为1.25 g/cm3 -
[1] 王骁男.塔河油田二叠系井壁失稳机理及防塌强抑制钻井液体系研究[D].北京: 中国地质大学, 2019.WANG Xiaonan. Study on borehole wall instability mechanism of permian in Tahe oil field and development of drilling fluid with strong anti- collapse and restraint[D]. Beijing: China University of Geosciences,2019. [2] 李建山. 杭锦旗区块防塌防漏钻井液技术[J]. 钻井液与完井液,2019,36(3):308-314.LI Jianshan. Drilling fluid technology for borehole wall stabilization and mud loss control in block Hangjinqi[J]. Drilling Fluid & Completion Fluid, 2019, 36(3):308-314. [3] 林海,邓金根,谢涛,等. 地层各向异性对硬脆性泥页岩井壁稳定性的影响[J]. 东北石油大学学报,2021,45(1):85-94.LIN Hai, DENG Jingen, XIE Tao, et al. Effect of formation anisotropy on wellbore stability of hard brittle shale[J]. Journal of Northeast Petroleum University, 2021, 45(1):85-94. [4] 龙大清,曾李,崔继明,等. “三强”防塌钻井液的研究与应用[J]. 钻井液与完井液,2012,29(1):52-55.LONG Daqing, ZENG Li, CUI Jiming, et al. Research and application of "three strong " anti-caving drilling fluid[J]. Drilling Fluid & Completion Fluid, 2012, 29(1):52-55. [5] 邱春阳,张翔宇,赵红香,等. 顺北区块深层井壁稳定钻井液技术[J]. 天然气勘探与开发,2021,44(2):81-86.QIU Chunyang, ZHANG Xiangyu, ZHAO Hongxiang, et al. Drilling-fluid system for deep borehole stability in Shunbei block, Tarim Basin[J]. Natural Gas Explor Ation and Development, 2021, 44(2):81-86. [6] 赵炬肃. 塔河油田盐下探井三开长裸眼井壁稳定问题的探讨[J]. 钻井液与完井液,2005,22(6):69-72.ZHAO Jusu. Research on wellbore stability of third opening and long naked hole in the Yanxia exploration well[J]. Drilling Fluid & Completion Fluid, 2005, 22(6):69-72. [7] 严羿,冯勇,孙俊,等. 塔中二、三叠系防塌钻井液工艺技术应用[J]. 钻井液与完井液,2021,47(4):187-189.YAN Yi, FENG Yong, SUN Jun, et al. Application of anti-collapse drilling fluid technology in the second and triassic systems of tazhong[J]. Drilling Fluid & Completion Fluid, 2021, 47(4):187-189. [8] 陈华. 苏里格气田水平井斜井段防漏防塌钻井液技术[J]. 钻井液与完井液,2018,35(1):66-70.CHEN Hua. Drilling fluid technology for mud loss control and borehole wall stabilization in the slant section of horizontal wells in Sulige gas field[J]. Drilling Fluid & Completion Fluid, 2018, 35(1):66-70. [9] 张建斌,贾俊,刘兆利. 长庆气田碳质泥岩防塌钻井液技术[J]. 钻井液与完井液,2018,35(3):68-73.ZHANG Jianbin, JIA Jun, LIU Zhaoli. Dilling fluid technology for preventing collapse of carbargilite formation in changqing gas field[J]. Drilling Fluid & Completion Fluid, 2018, 35(3):68-73. [10] 褚奇,李涛,王栋,等. 龙凤山气田强抑制封堵型防塌钻井液技术[J]. 钻井液与完井液,2016,33(5):35-40.CHU Qi, LI Tao, WANG Dong, et al. Plugging inhibitive drilling fluid used in longfengshan gas field[J]. Drilling Fluid & Completion Fluid, 2016, 33(5):35-40. [11] 陈晓华,邱正松,冯永超,等. 鄂尔多斯盆地富县区块强抑制强封堵防塌钻井液技术[J]. 钻井液与完井液,2021,38(4):462-468.CHEN Xiaohua, QIU Zhengsong, FENG Yongchao, et al. An anti-collapse drilling fluid with strong inhibitive and plugging capacity for use in the Fuxian block in Ordos basin[J]. Drilling Fluid & Completion Fluid, 2021, 38(4):462-468. [12] 程善平,鄢家宇,曹鹏,等. 塔里木泛哈拉哈塘桑塔木组硬脆性泥岩井壁失稳机理及对策[J]. 钻采工艺,2018,41(5):23-25.CHENG Shanping, YAN Jiayu, CAO Peng, et al. Study on instability mechanism of hardbrittle mudstone borehole wall at sangtamu group in halahatang block of tarim oilfield and countermeasures[J]. Drilling & Production Technology, 2018, 41(5):23-25. [13] 陈修平,李双贵,于洋,等. 顺北油气田碳酸盐岩破碎性地层防塌钻井液技术[J]. 石油钻探技术,2020,48(2):12-16.CHEN Xiuping,LI Shuanggui,YU Yang, et al. Anti-collapse drilling fluid technology for broken carbonate formation in Shunbei oil and gas field[J]. Petroleum Drilling Techniques, 2020, 48(2):12-16. [14] 袁国栋,王鸿远,陈宗琦,等. 塔里木盆地满深1井超深井钻井关键技术[J]. 石油钻探技术,2020,48(4):21-27.YUAN Guodong, WANG Hongyuan, CHEN Zongqi, et al. Key drilling technologies for the ultra-deep well Manshen 1 in the Tarim basin[J]. Petroleum Drilling Techniques, 2020, 48(4):21-27. -