留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种强吸附疏水改性纳米SiO2封堵剂

滕春鸣 甄剑武 罗会义 蒋思臣

滕春鸣,甄剑武,罗会义,等. 一种强吸附疏水改性纳米SiO2封堵剂[J]. 钻井液与完井液,2022,39(3):307-312 doi: 10.12358/j.issn.1001-5620.2022.03.007
引用本文: 滕春鸣,甄剑武,罗会义,等. 一种强吸附疏水改性纳米SiO2封堵剂[J]. 钻井液与完井液,2022,39(3):307-312 doi: 10.12358/j.issn.1001-5620.2022.03.007
TENG Chunming, ZHEN Jianwu, LUO Huiyi, et al.A strongly adsorptive hydrophobically modified nano SiO2 plugging agent[J]. Drilling Fluid & Completion Fluid,2022, 39(3):307-312 doi: 10.12358/j.issn.1001-5620.2022.03.007
Citation: TENG Chunming, ZHEN Jianwu, LUO Huiyi, et al.A strongly adsorptive hydrophobically modified nano SiO2 plugging agent[J]. Drilling Fluid & Completion Fluid,2022, 39(3):307-312 doi: 10.12358/j.issn.1001-5620.2022.03.007

一种强吸附疏水改性纳米SiO2封堵剂

doi: 10.12358/j.issn.1001-5620.2022.03.007
基金项目: 国家科技重大专项“彭水地区常压页岩气勘探开发示范工程”(2016ZX05061);国家自然科学基金重大项目“页岩油气高效开发基础理论研究”(51490650);中国石化科技攻关项目“威荣地区水基钻井液研究与应用”(PE19013)
详细信息
    作者简介:

    滕春鸣,1972年生,现在主要从事石油工程技术研究及石油科技期刊编辑工作。E-mail:tengcm.sripe@sinopec.com

  • 中图分类号: TE254.4

A Strongly Adsorptive Hydrophobically Modified Nano SiO2 Plugging Agent

  • 摘要: 钻井过程中钻遇稳定性较差的地层和承压能力较弱的地层时,经常出现井壁失稳和井下漏失等问题,为此开展了新型纳米封堵剂的研究与评价。合成了强吸附疏水纳米封堵剂,对其粒度分布、吸附性、润湿性和砂床封堵性能进行了测试。测试结果表明,该封堵剂粒度分布在100~150 nm,吸附性强,高温下能够将页岩表面水的润湿接触角增大到80.7°;加量为2.5%时,实验浆的砂床滤失量降低到5.0 mL;对钻井液流变性影响较小,API滤失量从4.4 mL降低到1.0 mL,高温高压滤失量从16.2 mL降低到6.2 mL;加量超过3.0 %时,渗透率降低到2.81 μD;PPA封堵率测试表明,该封堵剂能在陶瓷过滤盘内部形成封堵,钻井液的滤失速率降低到0.45 mL/min1/2,瞬时滤失量降低到2.58 mL。研究表明,强吸附疏水纳米封堵剂能够提高钻井液的封堵能力,降低钻井液对地层的侵入量,对保护井壁稳定有较好的作用。

     

  • 图  1  封堵剂XSF-1粒径分布图

    图  2  温度对封堵剂吸附量的影响

    图  3  封堵剂浓度对砂床滤失量的影响曲线

    图  4  封堵剂XSF-1加量对钻井液滤失量的影响曲线

    图  5  钻井液高温高压滤饼微观形貌

    图  6  封堵剂XSF-1加量对滤饼渗透率的影响曲线

    图  7  含XSF-1的钻井液滤失量与时间平方根的关系曲线

    表  1  封堵剂XSF-1加量对页岩表面润湿性的影响

    XSF-1/%25 ℃接触角/(°)120 ℃接触角/(°)
    0.540.637.5
    1.060.854.8
    2.071.470.2
    3.083.679.8
    4.084.380.7
    下载: 导出CSV

    表  2  封堵剂XSF-1对钻井液流变性能的影响

    XSF-1/%AV/(mPa·s)PV/(mPa·s)YP/PaGel/(Pa/Pa)
    026.019.07.01.0/3.0
    0.526.519.07.51.0/3.0
    1.027.019.08.01.5/3.0
    2.028.521.07.51.5/3.0
    3.029.521.08.51.5/3.5
    4.030.522.08.51.5/3.5
    下载: 导出CSV

    表  3  不同浓度XSF-1钻井液的PPA封堵效果

    XSF-1/
    %
    FLHTHP/
    mL
    FLPPA/
    mL
    滤失量降
    低率/%
    0.016.215.26.17
    0.515.614.010.26
    1.014.410.427.78
    2.08.87.218.18
    3.07.26.016.67
    4.06.65.615.15
    下载: 导出CSV

    表  4  钻井液PPA滤失速率和瞬时滤失量

    XSF-1/%滤失速率/(mL·min-1/2瞬时滤失量/mL
    01.149.28
    0.51.088.06
    1.00.905.60
    2.00.643.63
    3.00.493.16
    4.00.452.58
    下载: 导出CSV
  • [1] 石秉忠,夏柏如,林永学,等. 硬脆性泥页岩水化裂缝发展的CT 成像与机理[J]. 石油学报,2012,33(1):137-142. doi: 10.7623/syxb201201020

    SHI Bingzhong, XIA Bairu, LIN Yongxue, et al. CT Imaging and mechanism analysis of crack development by hydration in hard-brittle shale formations[J]. Acta Petrolei Sinica, 2012, 33(1):137-142. doi: 10.7623/syxb201201020
    [2] 张文哲,李伟,王波,等. 延长油田致密油藏水平井强封堵钻井液优选与现场应用[J]. 油田化学,2019,36(2):191-195.

    ZHANG Wenzhe, LI Wei, WANG Bo, et al. Optimization and application of strong plugging drilling fluid for horizontal well in tight oil of Yanchang oilfield[J]. Oilfield Chemistry, 2019, 36(2):191-195.
    [3] 金军斌. 塔里木盆地顺北区块超深井火成岩钻井液技术[J]. 石油钻探技术,2016,44(6):17-23.

    JIN Junbin. Drilling fluid technology for igneous rocks in ultra-deep wells in the Shunbei area, Tarim basin[J]. Petroleum Drilling Techniques, 2016, 44(6):17-23.
    [4] 李治衡,林海,董平华,等. 渤中区块火成岩地层钻井液优化研究[J]. 非常规油气,2019,6(3):81-86. doi: 10.3969/j.issn.2095-8471.2019.03.013

    LI Zhiheng, LIN Hai, DONG Pinghua, et al. Study on drilling fluid optimization in igneous rock formation in Bozhong block[J]. Unconventonal Oil & Gas, 2019, 6(3):81-86. doi: 10.3969/j.issn.2095-8471.2019.03.013
    [5] KARCHER B J, GIGER F M, COMBE J. Some practical formulas to predict horizontal wells behavior[R]. SPE 15430, 1986.
    [6] 姜洪福,隋军,庞彦明,等. 特低丰度油藏水平井开发技术研究与应用[J]. 石油勘探与开发,2006,33(3):364-368. doi: 10.3321/j.issn:1000-0747.2006.03.022

    JIANG Hongfu, SUI Jun, PANG Yanming, et al. Technique of exceptionally low abundance oil reservoir development by horizontal wells and its application[J]. Petroleum Exploration and Development, 2006, 33(3):364-368. doi: 10.3321/j.issn:1000-0747.2006.03.022
    [7] 褚奇,孔勇,杨帆,等. 多苯基芳基硅烷偶联剂改性纳米SiO2封堵剂[J]. 断块油气田,2017,24(2):281-284.

    CHU Qi, KONG Yong, YANG Fan, et al. Nano-silica dioxide plugging agent modified by polyphenyl aryl silanes coupling agent[J]. Fault-Block Oil & Gas Field, 2017, 24(2):281-284.
    [8] 王伟吉,邱正松,暴丹,等. 温压成膜封堵技术研究及应用[J]. 特种油气藏,2015,22(1):144-147. doi: 10.3969/j.issn.1006-6535.2015.01.035

    WANG Weiji, QIU Zhengsong, BAO Dan, et al. Warm-compaction film-forming plugging and its application[J]. Special Oil & Gas Reservoirs, 2015, 22(1):144-147. doi: 10.3969/j.issn.1006-6535.2015.01.035
    [9] 徐琳,邓明毅,郭拥军,等. 纳米SiO2 接枝超支化聚酰胺的合成及性能评价[J]. 石油化工,2016,45(11):1352-1356. doi: 10.3969/j.issn.1000-8144.2016.11.011

    XU Lin, DENG Mingyi, GUO Yongjun, et al. Synthesis and performance evaluation of nano SiO2 grafted with hyper-branched polyamide[J]. Petrochemical Technology, 2016, 45(11):1352-1356. doi: 10.3969/j.issn.1000-8144.2016.11.011
    [10] 唐文泉,王成彪,林永学,等. 页岩气地层纳微米孔隙结构特征及封堵实验评价[J]. 科学技术与工程,2017,17(12):32-38. doi: 10.3969/j.issn.1671-1815.2017.12.007

    TANG Wenquan, WANG Chengbiao, LIN Yongxue, et al. The characteristic analysis of micro-nano pore structure in shale gas formation and its sealing evaluation[J]. Science Technology and Engineering, 2017, 17(12):32-38. doi: 10.3969/j.issn.1671-1815.2017.12.007
    [11] 余文可,林凌,罗云翔,等. 贝壳粉基自适应性封堵剂[J]. 钻井液与完井液,2021,38(6):715-720.

    YU Wenke, LIN Ling, LUO Yunxiang, et al. A self-adaptive shell powder plugging agent[J]. Drilling Fluid & Completion Fluid, 2021, 38(6):715-720.
    [12] 王力,孟尚志,陈万钢,等. 提高煤层强度的钻井液防塌封堵剂的研制[J]. 钻井液与完井液,2018,35(5):46-49. doi: 10.3969/j.issn.1001-5620.2018.05.009

    WANG Li, MENG Shangzhi, CHEN Wangang, et al. Development of and study on an anti-sloughing plugging agent used in drilling fluids to strengthen coal beds[J]. Drilling Fluid & Completion Fluid, 2018, 35(5):46-49. doi: 10.3969/j.issn.1001-5620.2018.05.009
    [13] 陈修平,李双贵,于洋,等. 顺北油气田碳酸盐岩破碎性地层防塌钻井液技术[J]. 石油钻探技术,2020,48(2):12-16.

    CHEN Xiuping, LI Shuanggui, YU Yang, et al. Anti-collapse drilling fluid technology for broken carbonate formation in Shunbei oil and gas field[J]. Petroleum Drilling Techniques, 2020, 48(2):12-16.
    [14] 王翔. 鄂尔多斯盆地西部页岩油水平井井壁稳定技术[J]. 石油地质与工程,2019,33(4):88-91. doi: 10.3969/j.issn.1673-8217.2019.04.022

    WANG Xiang. Wellbore stability technique in horizontal wells for shale oil reservoirs in western Ordos basin[J]. Petroleum Geology and Engineering, 2019, 33(4):88-91. doi: 10.3969/j.issn.1673-8217.2019.04.022
    [15] 罗勇,张海山,王荐,等. 东海油气田深部泥页岩特性及钻井液技术研究[J]. 西南石油大学学报(自然科学版),2019,41(4):90-98.

    LUO Yong, ZHANG Haishan, WANG Jian, et al. A study on the characteristics of deeply buried mud shale and drilling fluid techniques in oil and gas fields of east China sea[J]. Journal of Southwest Petroleum University(Science & Technology Edition ), 2019, 41(4):90-98.
    [16] 徐哲,孙金声,吕开河,等. 一种新型外柔内刚型封堵剂的研制[J]. 钻井液与完井液,2020,37(6):726-730. doi: 10.3969/j.issn.1001-5620.2020.06.008

    XU Zhe, SUN Jinsheng, LYU Kaihe, et al. Research and development of a novel internal rigid external soft plugging agent[J]. Drilling Fluid & Completion Fluid, 2020, 37(6):726-730. doi: 10.3969/j.issn.1001-5620.2020.06.008
    [17] GB/T 16783.1—2014 石油天然气工业钻井液现场测试: 第1部分: 水基钻井液[S].

    GB/T 16783.1—2014 Petroleum and natural gas industries-field testing of drilling fluids: part 1: water-based fluids[S].
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  661
  • HTML全文浏览量:  279
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-23
  • 修回日期:  2022-02-01
  • 网络出版日期:  2022-08-10
  • 刊出日期:  2022-05-30

目录

    /

    返回文章
    返回