留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

环保型改性生物多肽水基钻井液抑制剂的合成与应用

徐毅 许桂莉 蒋官澄

徐毅,许桂莉,蒋官澄. 环保型改性生物多肽水基钻井液抑制剂的合成与应用[J]. 钻井液与完井液,2022,39(3):301-306 doi: 10.12358/j.issn.1001-5620.2022.03.006
引用本文: 徐毅,许桂莉,蒋官澄. 环保型改性生物多肽水基钻井液抑制剂的合成与应用[J]. 钻井液与完井液,2022,39(3):301-306 doi: 10.12358/j.issn.1001-5620.2022.03.006
XU Yi, XU Guili, JIANG Guancheng.Synthesis and application of an environmentally friendly modified bio-peptide shale inhibitor for water based drilling fluids[J]. Drilling Fluid & Completion Fluid,2022, 39(3):301-306 doi: 10.12358/j.issn.1001-5620.2022.03.006
Citation: XU Yi, XU Guili, JIANG Guancheng.Synthesis and application of an environmentally friendly modified bio-peptide shale inhibitor for water based drilling fluids[J]. Drilling Fluid & Completion Fluid,2022, 39(3):301-306 doi: 10.12358/j.issn.1001-5620.2022.03.006

环保型改性生物多肽水基钻井液抑制剂的合成与应用

doi: 10.12358/j.issn.1001-5620.2022.03.006
基金项目: 中国石油集团川庆钻探工程有限公司专项“深井超深井钻完井关键技术研究与试验”课题“深井超深井钻完井关键技术研究与试验”(CQ2021B-35-Z2-3)
详细信息
    作者简介:

    徐毅,工程师,1987年生,毕业于中国石油大学(北京)应用化学专业,现从事钻井液技术应用与研究工作。电话 (028)86012175;E-mail:XuYi1_sc@cnpc.com.cn

  • 中图分类号: TE254.4

Synthesis and Application of an Environmentally Friendly Modified Bio-Peptide Shale Inhibitor for Water Based Drilling Fluids

  • 摘要: 随着国家对环境保护的日益重视,传统的聚磺钻井液处理剂将慢慢被环保型钻井液处理剂取代。从分子结构设计出发,基于生物多肽明胶进行改性合成了环保型改性生物多肽抑制剂WNGT。明胶改性后在核磁共振图谱的化学位移3.19 ppm和4.12 ppm处出现2个明显的新的特征峰,表明成功制备得到目标产物。线性膨胀实验表明:对比KCl、聚醚胺PEA抑制剂,在相同加量下,WNGT溶液中膨润土的膨胀高度最小,抑制效果最好;WNGT具有优良的抑制黏土水化膨胀性能,2%加量的WNGT,膨润土24 h的膨胀量仅为1.60 mm;与改性前的明胶相比,页岩岩屑滚动回收率达95%以上,相比改性前提高46.05%;膨润土浆中加入2%WNGT后,Zeta电位降至−11.7 mV,WNGT可有效中和黏土负电荷,压缩双电层,降低黏土Zeta电位。在川渝地区开发井沙溪庙砂泥岩井段进行了现场应用,在井浆中加入WNGT后,井浆黏度和切力均有所下降,且能长时间稳住钻井液流变性,保证了在砂泥岩段的顺利钻进,降低了钻井成本。

     

  • 图  1  环保型改性生物多肽抑制剂核磁谱图

    注:(a) 为明胶, (b) 为WNGT

    图  2  不同抑制剂溶液中岩心的线性膨胀曲线

    图  3  不同浓度WNGT溶液中岩心的线性膨胀曲线

    图  4  120 ℃和150 ℃下不同抑制剂的页岩滚动回收率

    图  5  不同WNGT浓度下黏土的Zeta电位

    表  1  2%WNGT对4%黏土基浆中 颗粒粒度分布情况的影响

    处理剂D10/µmD50/µmD90/µmDv/µmDs/µm
    空白2.4345.77014.7377.5324.733
    明胶22.55051.459103.85357.94237.857
    WNGT38.850127.363545.925232.86084.722
    下载: 导出CSV

    表  2  不同浓度WNGT对黏土晶层间距的影响

    抑制剂膨润土晶层间距/nm
    湿样干样
    去离子水1.821.22
    0.5%WNGT1.751.61
    1.0%WNGT1.661.74
    2.0%WNGT1.682.27
    下载: 导出CSV

    表  3  川渝地区某开发井井浆的基本性能(120 ℃、16 h)

    配方实验
    条件
    PV/
    mPa·s
    YP/
    Pa
    Gel/
    Pa/Pa
    FLAPI/
    mL
    FLHTHP/
    mL
    1#老化前244.00.5/2.06.0
    老化后255.01.0/3.08.0
    2#老化前286.01.0/3.02.0
    老化后275.51.0/3.04.0
    3#老化前213.00.5/1.52.4
    老化后223.50.5/1.54.2
      注:1# :井浆;2# :井浆+1.5%降滤失剂+0.5%包被剂+0.5%WNGT+0.1%提切剂;3# :井浆+5%胶液(10%KCl+2%降滤失剂+0.5%WNGT+0.5%包被剂+0.2%提切剂);FLHTHP在120 ℃测定
    下载: 导出CSV

    表  4  现场钻井液的性能

    井深/
    m
    FV/
    s
    PV/
    mPa·s
    YP/
    Pa
    Gel/
    Pa/Pa
    FLAPI/
    mL
    FLHTHP/
    mL
    21455524.04.01.0/2.06.0
    21506030.05.02.0/4.08.0
    21555323.04.00.5/1.52.0
    21605424.04.01.0/3.04.0
    21655323.53.00.5/2.02.4
    21705323.53.50.5/2.04.2
       注:FLHTHP在120 ℃测定
    下载: 导出CSV
  • [1] 庄庆佐,田玉芹,罗跃,等. 钻井液用MOF衍生物封堵-抑制剂的制备与性能[J]. 油田化学,2020,37(4):575-580.

    ZHUANG Qingzuo, TIAN Yuqin, LUO Yue, et al. Preparation and performance of MOF derivative plugging inhibitor for drilling fluids[J]. Oilfield Chemistry, 2020, 37(4):575-580.
    [2] 田惠,张克正,史野,等. 低固相超高温钻井液的研究及应用[J]. 石油化工应用,2020,39(10):35-39. doi: 10.3969/j.issn.1673-5285.2020.10.008

    TIAN Hui, ZHANG Kezheng, SHI Ye, et al. Research and application of low-solid ultra-high temperature drilling fluid[J]. Petrochemical Industry Applications, 2020, 39(10):35-39. doi: 10.3969/j.issn.1673-5285.2020.10.008
    [3] 张卫东,韩磊,王富华,等. 页岩抑制剂的抑制机理及研究进展[J]. 钻井液与完井液,2021,38(1):1-8. doi: 10.3969/j.issn.1001-5620.2021.01.001

    ZHANG Weidong, HAN Lei, WANG Fuhua, et al. Inhibition mechanism and research progress of shale inhibitors[J]. Drilling Fluid & Completion Fluid, 2021, 38(1):1-8. doi: 10.3969/j.issn.1001-5620.2021.01.001
    [4] 蒋官澄,王凯,贺垠博,等. 基于超分子化学的钻井液新技术[J]. 中国石油大学学报(自然科学版),2020,44(4):111-120.

    JIANG Guancheng, WANG Kai, HE Yinbo, et al. New drilling fluid technology based on supramolecular chemistry[J]. Journal of China University of Petroleum (Edition of Natural Science), 2020, 44(4):111-120.
    [5] 刘状, 查如俊, 邵斐, 等. 石油树脂钻井液用页岩抑制剂的研制[J]. 华东理工大学学报(自然科学版), 2021, 47(2): 170-176.

    LIU Zhuang, ZHA Rujun, SHAO Fei, et al. Development of shale inhibitor for petroleum resie drilling fluid[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2021, 47(2): 170-176.
    [6] 吴爽. 无土相氯化钾聚合物钻井液体系室内研究[J]. 内蒙古石油化工,2020,46(6):114-116. doi: 10.3969/j.issn.1006-7981.2020.06.045

    WU Shuang. Laboratory study on soil-free potassium chloride polymer drilling fluid system[J]. Inner Mongolia Petrochemical Industry, 2020, 46(6):114-116. doi: 10.3969/j.issn.1006-7981.2020.06.045
    [7] 刘磊,赵广渊,郭宏峰,等. 胺类抑制剂ZC-NW的合成及评价[J]. 应用化工,2020,49(8):1953-1955.

    LIU Lei, ZHAO Guangyuan, GUO Hongfeng, et al. Synthesis and evaluation of amine inhibitor ZC-NW[J]. Applied Chemical Industry, 2020, 49(8):1953-1955.
    [8] 张坤,王磊磊,董殿彬,等. 多元聚胺钻井液研究与应用[J]. 钻井液与完井液,2020,37(3):301-305. doi: 10.3969/j.issn.1001-5620.2020.03.006

    ZHANG Kun, WANG Leilei, DONG Dianbin, et al. Research and application of polyamine drilling fluids[J]. Drilling Fluid & Completion Fluid, 2020, 37(3):301-305. doi: 10.3969/j.issn.1001-5620.2020.03.006
    [9] 范劲,李俊材,王君. 强抑制聚合物体系解决川渝地区大井眼段钻井液回收利用率低的问题[J]. 钻井液与完井液,2020,37(3):313-318,326. doi: 10.3969/j.issn.1001-5620.2020.03.008

    FAN Jin, LI Juncai, WANG Jun. Strongly inhibited polymer system to solve the problem of low recovery rate of drilling fluid in large wellbore sections in Sichuan-Chongqing area[J]. Drilling Fluid & Completion Fluid, 2020, 37(3):313-318,326. doi: 10.3969/j.issn.1001-5620.2020.03.008
    [10] 周芳芳,王金树. 低聚胺盐抑制剂的合成及性能评价[J]. 化学工程与装备,2020(5):15-17.

    ZHOU Fangfang, WANG Jinshu. Synthesis and performance evaluation of oligoamine salt inhibitors[J]. Chemical Engineering and Equipment, 2020(5):15-17.
    [11] 秦国川,何淼,许明标,等. 国内外页岩水基钻井液用抑制剂研究进展[J]. 应用化工,2020,49(7):1802-1806. doi: 10.3969/j.issn.1671-3206.2020.07.042

    QIN Guochuan, HE Miao, XU Mingbiao, et al. Research progress of inhibitors for shale water-based drilling fluids at home and abroad[J]. Applied Chemical Industry, 2020, 49(7):1802-1806. doi: 10.3969/j.issn.1671-3206.2020.07.042
    [12] 陈俊斌,明显森,陶怀志,等. 页岩气水基钻井液在YS-AB井现场试验与认识[J]. 钻采工艺,2021,44(4):98-103. doi: 10.3969/J.ISSN.1006-768X.2021.04.23

    CHEN Junbin, MING Xiansen, TAO Huaizhi, et al. Field test and understanding of shale gas water-based drilling fluid in YS-AB well[J]. Drilling and Production Technology, 2021, 44(4):98-103. doi: 10.3969/J.ISSN.1006-768X.2021.04.23
    [13] 孙晨. 高性能水基钻井液技术发展分析[J]. 化工管理,2021(18):107-108.

    SUN Chen. Analysis on the development of high-performance water-based drilling fluid technology[J]. Chemical Industry Management, 2021(18):107-108.
    [14] 刘自广,宋丰博,尤志良,等. 基于改性植物多酚的高温高密度环保型水基钻井液[J]. 钻井液与完井液,2021,38(3):285-291.

    LIU Ziguang, SONG Fengbo, YOU Zhiliang, et al. High temperature, high density and environmentally friendly water-based drilling fluid based on modified plant polyphenols[J]. Drilling Fluid & Completion Fluid, 2021, 38(3):285-291.
    [15] 陈斌,周姗姗,赵远远,等. 适用于大位移井新型水基钻井液室内研究[J]. 钻井液与完井液,2021,38(1):42-46.

    CHEN Bin, ZHOU Shanshan, ZHAO Yuanyuan, et al. Laboratory study of a new type of water-based drilling fluid suitable for extended reach wells[J]. Drilling Fluid & Completion Fluid, 2021, 38(1):42-46.
    [16] 杨建民,刘伟,熊小伟,等. 页岩气井环保型强抑制水基钻井液体系研究与应用[J]. 钻采工艺,2020,43(2):107-110. doi: 10.3969/J.ISSN.1006-768X.2020.02.29

    YANG Jianmin, LIU Wei, XIONG Xiaowei, et al. Research and application of environmentally friendly and strongly inhibited water-based drilling fluid system for shale gas wells[J]. Drilling and Production Technology, 2020, 43(2):107-110. doi: 10.3969/J.ISSN.1006-768X.2020.02.29
    [17] 罗健生,蒋官澄,王国帅,等. 一种无氯盐环保型强抑制水基钻井液体系[J]. 钻井液与完井液,2019,36(5):594-599. doi: 10.3969/j.issn.1001-5620.2019.05.012

    LUO Jiansheng, JIANG Guancheng, WANG Guoshuai, et al. A non-chlorine salt environmentally friendly and strongly inhibited water-based drilling fluid system[J]. Drilling Fluid & Completion Fluid, 2019, 36(5):594-599. doi: 10.3969/j.issn.1001-5620.2019.05.012
    [18] 刘政,李俊才,李轩,等. CQH-M2高性能水基钻井液及其在威204H11-4井的应用[J]. 钻井液与完井液,2018,35(3):32-36. doi: 10.3969/j.issn.1001-5620.2018.03.005

    LIU Zheng, LI Juncai, LI Xuan, et al. CQH-M2 high-performance water-based drilling fluid and its application in well Wei 204H11-4[J]. Drilling Fluid & Completion Fluid, 2018, 35(3):32-36. doi: 10.3969/j.issn.1001-5620.2018.03.005
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  679
  • HTML全文浏览量:  294
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-23
  • 修回日期:  2022-01-11
  • 网络出版日期:  2022-08-10
  • 刊出日期:  2022-05-30

目录

    /

    返回文章
    返回