留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于压力的马氏漏斗黏度在线检测方法

陈晖 马少华 黄进云 王旱祥 赵玉明 宫肇阳 杨劲松

陈晖,马少华,黄进云,等. 基于压力的马氏漏斗黏度在线检测方法[J]. 钻井液与完井液,2022,39(3):285-293 doi: 10.12358/j.issn.1001-5620.2022.03.004
引用本文: 陈晖,马少华,黄进云,等. 基于压力的马氏漏斗黏度在线检测方法[J]. 钻井液与完井液,2022,39(3):285-293 doi: 10.12358/j.issn.1001-5620.2022.03.004
CHEN Hui, MA Shaohua, HUANG Jinyun, et al.Research on on-line detection method of marsh funnel viscosity based on pressure[J]. Drilling Fluid & Completion Fluid,2022, 39(3):285-293 doi: 10.12358/j.issn.1001-5620.2022.03.004
Citation: CHEN Hui, MA Shaohua, HUANG Jinyun, et al.Research on on-line detection method of marsh funnel viscosity based on pressure[J]. Drilling Fluid & Completion Fluid,2022, 39(3):285-293 doi: 10.12358/j.issn.1001-5620.2022.03.004

基于压力的马氏漏斗黏度在线检测方法

doi: 10.12358/j.issn.1001-5620.2022.03.004
基金项目: 中石油重大科技项目“天然气水合物试采井口与防砂装备及安全关键技术”(ZD2019-184-004);中国石油大学(华东)教学改革项目“以能力培养为导向的水中机器人课程实践教学探究”(KC-202079)
详细信息
    作者简介:

    陈晖,高级工程师,1971年生,工作于中国石油大学(华东),主要从事机械电子工程以及井下石油设备研究工作。电话 18653697796;E-mail: sdchenhui1971@163.com

    通讯作者:

    马少华,电话 15610458285,E-mail:mashaohua85@upc.edu.cn

  • 中图分类号: TE254.2

Research on On-line Detection Method of Marsh Funnel Viscosity Based on Pressure

  • 摘要: 针对马氏漏斗黏度手动测量方法存在的工作量大、测量精度低、监测不连续等问题,从马氏漏斗黏度检测的原理、结构、算法等方面研究钻井液的在线检测过程,基于液位高度与液柱压力的关系,提出了一种钻井液马氏漏斗黏度的在线检测方法,并研制了一套实验装置。通过仿真模拟和中原油田钻井现场试验,验证了测试系统的准确性,系统精度达到±1 s。综合分析钻井液马氏漏斗黏度的影响因素,从溢流口形状、漏斗改造工艺和液位检测精度等方面优化在线检测方法,实验装置的钻井液密度测量误差低于3%,黏度测量误差低于2%。提出的马氏漏斗黏度在线检测方法及其实验装置可较好完成对常规钻井液的密度和马氏漏斗黏度的在线检测,具有较好的适应性和较高的自动化程度。在满足检测精度的前提下,在线检测方法和实验样机可较好代替现场人工检测,提高了油田的智能化水平。

     

  • 图  1  马氏漏斗结构示意图

    注:其中D0为漏斗内口径,0.1520 m;H0为漏斗高度,0.3050 m;H1为实验开始液位,0.2841 m;H2为实验结束液位,0.2031 m;DL为喷嘴内径,0.0048 m;L为喷嘴高度,0.0508 m

    图  2  钻井液黏度在线检测系统方案

    图  3  马氏漏斗的改造方案

    图  4  基于压力的马氏漏斗黏度在线检测算法

    图  5  基于压力的马氏漏斗仿真实验结果

    图  6  溢流口截面形状

    图  7  溢流口对比分析

    图  8  走刀路径示意图

    图  9  实验液体的实验曲线

  • [1] 付晓颖,朱世飞,钟文,等. 钻井液综合参数在线测量方法的研究[J]. 甘肃科技,2015,31(9):78-80. doi: 10.3969/j.issn.1000-0952.2015.09.026

    FU Xiaoying, ZHU Shifei, ZHONG Wen, et al. Research on on-line measurement method of comprehensive parameters for drilling fluid[J]. Gansu Science and Technology, 2015, 31(9):78-80. doi: 10.3969/j.issn.1000-0952.2015.09.026
    [2] PIROOZIAN A, ISMAIL I, YAACOB Z, et al. Impact of drilling fluid viscosity, velocity and hole inclination on cuttings transport in horizontal and highly deviated wells[J]. J Petrol Explor Prod Technol, 2012(2):149-156.
    [3] MARSH, HALLAN N. Properties and treatment of rotary mud[J]. Transactions of the AIME, 1931, 92(1):234-251. doi: 10.2118/931234-G
    [4] 李照川,郑力会,吴通,等. 马氏漏斗黏度计测定钻井流体流变参数新方法的建立[J]. 钻井液与完井液,2021,38(1):54-61. doi: 10.3969/j.issn.1001-5620.2021.01.009

    LI Zhaochuan, ZHENG Lihui, WU Tong, et al . A new method of measuring rheological properties of drilling fluids with Marsh funnel viscometer[J]. Drilling Fluid & Completion Fluid, 2021, 38(1):54-61. doi: 10.3969/j.issn.1001-5620.2021.01.009
    [5] SEDAGHAT, AHMAD. A novel and robust model for determining rheological properties of Newtonian and non-Newtonian fluids in a marsh funnel[J]. Journal of Petroleum Science & Engineering, 2017, 156:896-916.
    [6] GURIA C, KUMAR R, MISHRA P. Rheological analysis of drilling fluid using Marsh Funnel[J]. Journal of Petroleum Science and Engineering, 2013, 105(105):62-69.
    [7] 杨莉, 李家学, 刘会锋. 钻井液马氏漏斗黏度与表观黏度的关系[J]. 钻井液与完井液, 2012, 29(1): 12-14.

    YANG Li, LI Jiaxue, LIU Huifeng. Study on relationship between mash funnel viscosity and apparent viscosity of drilling fluids [J]. Drilling Fluid & Completion Fluid, 2012, 29(1): 12-14.
    [8] 刘扣其,邱正松,罗洋,等. 应用马氏漏斗测定钻井液流变参数[J]. 钻井液与完井液,2014,31(5):60-62. doi: 10.3969/j.issn.1001-5620.2014.05.017

    LIU Kouqi, QIU Zhengsong, LUO Yang, et al. Measure rheology of drilling fluids with marsh funnel viscometer[J]. Drilling Fluid & Completion Fluid, 2014, 31(5):60-62. doi: 10.3969/j.issn.1001-5620.2014.05.017
    [9] ZHANG Y , WU D, GAI Y , et al. Investigation on the countersink errors in the drilling of thin-wall stacked structures[J]. International Journal of Advanced Manufacturing Technology, 2020, 108(7):2497-2514.
    [10] CAO G Q, SUN Y Y. Finite Element analysis of deformation of the multipoint flexible clamped thin-Wall component during machining[J]. Advanced Materials Research, 2012, 542:519-522. doi: 10.4028/www.scientific.net/AMR.542-543.519
    [11] ZHOU W Q, DONG P S, LILLEM E I, et al. Analytical treatment of distortion effects on fatigue behaviors of lightweight shipboard structures[J]. International Journal of Fatigue, 130(C): 105-286.
    [12] FRICKE W, REMES H, FELTZ O, et al. Fatigue strength of laser-welded thin-plate ship structures based on nominal and structural hot-spot stress approach[J]. Ships and Offshore Structures, 2013, 10(1):39-44.
    [13] LILLEM E I, REMES H, LIINALAMPI S, et al. Influence of weld quality on the fatigue strength of thin normal and high strength steel butt joints[J]. Welding in the World, 2016, 60(4):731-740. doi: 10.1007/s40194-016-0326-8
    [14] LILLEM E I, LIINALAMPI S, REMES H, et al. Fatigue strength of thin laser-hybrid welded full-scale deck structure[J]. International Journal of Fatigue, 2017, 95:282-292. doi: 10.1016/j.ijfatigue.2016.11.012
    [15] REMES H, ROMANOFF J, LILLEM E I, et al. Factors affecting the fatigue strength of thin-plates in large structures[J]. International Journal of Fatigue, 2017, 101(2):397-407.
    [16] CHATTERJEE S, MAHAPATRA S S, ABHISHEK K. Simula-tion and optimization of machining parameters in drilling of ti-tanium alloys[J]. Simulation Modelling Practice and Theory, 2016, 62:31-48. doi: 10.1016/j.simpat.2015.12.004
    [17] SENTHILKUMAR M, PRABUKARTHI A, PRAKASH U, et al. Finite element analysis and experimental investiga-tion of drilling of titanium alloy(Ti6Al4V)[J]. Applied Mechanics and Materials, 2015, 813:342-346. doi: 10.4028/www.scientific.net/AMM.813-814.342
    [18] MA X, WU D, GAO Y, et al. An approach to countersink depth control in the drilling of thin-wall stacked structures with low stiffness[J]. Int J Adv Manuf Technol, 2018, 95(1):785-795. doi: 10.1007/s00170-017-1234-9
    [19] DENG Dean ,LIU Xiaozhan , HE Jing , et al. Investigating the influence of external restraint on welding distortion in thin-plate bead-on joint by means of numerical simulation and experiment[J]. The International Journal of Advanced Manufacturing Technology, 2016, 82(5):1049-1062. doi: 10.1007/s00170-015-7413-7
    [20] MANURUNG Y, SULAIMAN M S, ABAS S K, et al. Investigation on welding distortion of combined butt and T-joints with 9-mm thickness using FEM and experiment[J]. The International Journal of Advanced Manufacturing Technology, 2015, 77(5/8):775-782. doi: 10.1007/s00170-014-6268-7
    [21] YI Jie, ZHANG Jianming, GAO Shufen, et al. Effect of welding sequence on residual stress and deformation of 6061-T6 aluminium alloy automobile component[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(2):287-295. doi: 10.1016/S1003-6326(19)64938-1
    [22] 金业权. 非牛顿流体漏斗黏度与塑性黏度的实验研究[J]. 西部探矿工程,2004,16(2):37-38.

    JIN Yequan. Experimental study on funnel viscosity and plastic viscosity of non-newtonian fluid[J]. West-china Exploration Engineering, 2004, 16(2):37-38.
    [23] 王富华,李雪雨,赵海艳,等. 基于马氏漏斗黏度的油基钻井液表观黏度预测方法[J]. 石油钻探技术,2016,44(5):60-64.

    WANG Fuhua,LI Xueyu,ZHAO Haiyan,et al. Determination of the apparent viscosity of oil-based drilling fluid by using marsh funnel viscosity[J]. Petroleum Drilling Techniques, 2016, 44(5):60-64.
  • 加载中
图(9)
计量
  • 文章访问数:  582
  • HTML全文浏览量:  302
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-25
  • 修回日期:  2021-12-02
  • 录用日期:  2021-12-03
  • 网络出版日期:  2022-08-10
  • 刊出日期:  2022-05-30

目录

    /

    返回文章
    返回