留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

抗温强抑制有机硅酸盐聚合物的合成与性能评价

张帆 都伟超 孙金声 吕开河 刘敬平

张帆,都伟超,孙金声,等. 抗温强抑制有机硅酸盐聚合物的合成与性能评价[J]. 钻井液与完井液,2022,39(3):265-272 doi: 10.12358/j.issn.1001-5620.2022.03.001
引用本文: 张帆,都伟超,孙金声,等. 抗温强抑制有机硅酸盐聚合物的合成与性能评价[J]. 钻井液与完井液,2022,39(3):265-272 doi: 10.12358/j.issn.1001-5620.2022.03.001
ZHANG Fan, DU Weichao, SUN Jinsheng, et al.The synthesis and evaluation of a high temperature organosilicate polymer with high inhibitive capacity[J]. Drilling Fluid & Completion Fluid,2022, 39(3):265-272 doi: 10.12358/j.issn.1001-5620.2022.03.001
Citation: ZHANG Fan, DU Weichao, SUN Jinsheng, et al.The synthesis and evaluation of a high temperature organosilicate polymer with high inhibitive capacity[J]. Drilling Fluid & Completion Fluid,2022, 39(3):265-272 doi: 10.12358/j.issn.1001-5620.2022.03.001

抗温强抑制有机硅酸盐聚合物的合成与性能评价

doi: 10.12358/j.issn.1001-5620.2022.03.001
基金项目: 陕西省自然科学基础研究计划“应对陕北页岩气钻井壁失稳的成膜钻井液新体系研究”(2022JQ-493);国家自然基金联合基金“超深井安全高效井筒工作液构建及调控方法基础研究”( U1762212);国家自然基金青年科学基金项目“富伊利石页岩气地层水化失稳机理及化学物理耦合控制方法研究”(51904328)
详细信息
    作者简介:

    张帆,讲师,研究方向为钻井液技术。电话15165067001;E-mail:210713@xsyu.edu.cn

    通讯作者:

    孙金声,E-mail:sunjsdri@cnpc.com.cn

  • 中图分类号: TE254.4

The Synthesis and Evaluation of a High Temperature Organosilicate Polymer with High Inhibitive Capacity

  • 摘要: 为解决有机硅官能团在合成过程中易水解和易缩聚交联的技术难题,以2, 2-偶氮二异丁腈(ABIN)为引发剂,采用了丙烯酸(AA)、二甲氧基甲基乙烯基硅烷(VMDS)、甲基丙烯酰氧乙基三甲基氯化铵(DMC)为反应单体并进行了乳液聚合反应,合成了一种新型有机硅酸盐聚合物(ADMOS)。ADMOS的最优合成条件为:单体物质的量比AA∶DMC=3∶1、VMDS加量为单体总质量的5.0%、ABIN浓度为0.3%、反应温度为70 ℃,反应单体总浓度为25%,pH值为5。采用核磁共振氢谱(1H-NMR)、热重分析(TGA)、凝胶色谱法(GPC)确定了产物的分子结构,TGA表明ADMOS具有优异的热稳定性。分别通过线性膨胀实验、滚动回收实验和泥球浸泡实验评价了ADMOS的性能,结果显示,当ADMOS加量为3.0%时,人造膨润土岩心的线性膨胀率由水中的83.37%降低至16.57%、页岩岩屑的回收率由水中的11.82%增高至92.85%。泥球实验结果表明,ADMOS可有效地防止水分子侵入泥球内部,从而抑制黏土颗粒的水化分散。通过Zeta电位、X射线衍射(XRD)、元素分析(EDS)、原子力显微镜(AFM)和红外-热重联用实验,从微观角度揭示了ADMOS的抑制作用机理。

     

  • 图  1  ADMOS的热稳定性分析

    图  2  ADMOS的核磁氢谱图

    图  3  不同浓度ADMOS溶液中人造  岩心的常温常压线性膨胀率

    图  4  经150 ℃老化后不同浓度ADMOS溶液中岩屑的滚动回收率 

    图  5  泥球在不同溶液中浸泡16 h后的照片

    图  6  ADMOS抑制黏土造浆性能(80 ℃ 老化16 h)

    图  7  不同温度下ADMOS浓度对 黏土颗粒Zeta电位的影响

    图  8  原始页岩表面EDS分析

    图  9  经过1.0 %ADMOS溶液浸泡(150 ℃、16 h)改性页岩表面EDS分析

    图  10  ADMOS在云母片表面成膜AFM图

    图  11  ADMOS改性土析出气体红外吸收光谱图随时间的分布图

    图  12  ADMOS改性Na-MT热解气体析出三维图红外光谱和原位热重分析联用分析图

    表  1  ADMOS的相对分子质量

    重均分子量
    Mw
    数均分子量
    Mn
    Z均分子量
    Mz
    最高位峰的
    分子量Mp
    Z+1均分子
    Mz+1
    分散指数D
    Mw/Mn
    399428515139409963481.400 607
    下载: 导出CSV
  • [1] 王波,孙金声,申峰,等. 陆相页岩气水平井段井壁失稳机理及水基钻井液对策[J]. 天然气工业,2020,40(4):104-111. doi: 10.3787/j.issn.1000-0976.2020.04.013

    WANG Bo, SUN Jinsheng, SHEN Feng, et al. Mechanism of wellbore instability in continental shale gas horizontal sections and its water-based drilling fluid countermeasures[J]. Natural Gas Industry, 2020, 40(4):104-111. doi: 10.3787/j.issn.1000-0976.2020.04.013
    [2] 邹才能,赵群,丛连铸,等. 中国页岩气开发进展、潜力及前景[J]. 天然气工业,2020,41(1):1-14.

    ZOU Caineng, ZHAO Qun, CONG Lianzhu, et al. Development progress, potential and prospect of shale gas in China[J]. Natural Gas Industry, 2020, 41(1):1-14.
    [3] JIANG Guancheng, QI Yourong, AN Yuxiu, et al. Polyethyleneimine as shale inhibitor in drilling fluid[J]. Applied Clay Science, 2016, 127-128:70-77. doi: 10.1016/j.clay.2016.04.013
    [4] 康毅力,陈强,游利军,等. 钻井液作用下页岩破裂失稳行为试验[J]. 中国石油大学学报(自然科学版),2016,40(4):81-89.

    KANG Yili, CHEN Qiang, YOU Lijun, et al. Laboratory studies of shale fracturing behaviors with rock-drilling fluid interactions[J]. Journal of China University of Petroleum( Edition of Natural Science), 2016, 40(4):81-89.
    [5] LUO Zhihua, WANG Longxiang, YU Peizhi, et al. Experimental study on the application of an ionic liquid as a shale inhibitor and inhibitive mechanism[J]. Applied Clay Science, 2017, 150:267-274. doi: 10.1016/j.clay.2017.09.038
    [6] JIA Han, HUANG Pan, WANG Qiuxia, et al. Investigation of inhibition mechanism of three deep eutectic solvents as potential shale inhibitors in water-based drilling fluids[J]. Fuel, 2019, 244:403-411. doi: 10.1016/j.fuel.2019.02.018
    [7] ZHANG Fan, SUN Jinsheng, CHANG Xiaofeng, et al. A novel environment-friendly natural extract for inhibiting shale hydration[J]. Energy & Fuels, 2019, 33(8):7118-7126.
    [8] 潘一,廖松泽,杨双春,等. 耐高温聚胺类页岩抑制剂的研究现状[J]. 化工进展,2020,39(2):686-695.

    PAN Yi, LIAO Songze, YANG Shuangchun, et al. Research on high temperature resistant polyamine shale inhibitors[J]. Chemical Industry and Engineering Progress, 2020, 39(2):686-695.
    [9] 吴雄军,赵琳,林永学,等. 页岩水平井环保型多硅基水基钻井液技术[J]. 石油与天然气化工,2021,50(2):72-76. doi: 10.3969/j.issn.1007-3426.2021.02.012

    WU Xiongjun, ZHAO Lin, LIN Yongxue, et al. Environmental friendly water-based drilling fluid using multiple silicon treatment agents for horizontal wells in shale reservoir[J]. Chemical Engineering of Oil & Gas, 2021, 50(2):72-76. doi: 10.3969/j.issn.1007-3426.2021.02.012
    [10] 孙金声,汪世国,张毅,等. 水基钻井液成膜技术研究[J]. 钻井液与完井液,2003(6):9-13.

    SUN Jinsheng, WANG Shiguo, ZHANG Yi, et al. Study on membrane generating technology of water-based drilling fluid[J]. Drilling Fluid & Completion Fluid, 2003(6):9-13.
    [11] 白小东,蒲晓林. 水基钻井液成膜技术研究进展[J]. 天然气工业,2006(8):75-77. doi: 10.3321/j.issn:1000-0976.2006.08.023

    BAI Xiaodong, PU Xiaolin. Evolution of membrane forming technology of water-based mud[J]. Natural Gas Industry, 2006(8):75-77. doi: 10.3321/j.issn:1000-0976.2006.08.023
    [12] XU Yingjun, YIN Hong, YUAN Shenfeng, et al. Film morphology and orientation of amino silicone adsorbed onto cellulose substrate[J]. Applied Surface Science, 2009, 255(20):8435-8442. doi: 10.1016/j.apsusc.2009.05.149
    [13] KRUMPFER JOSEPH W, MCCARTHY THOMAS J. Rediscovering silicones: "unreactive" silicones react with inorganic surfaces[J]. Langmuir, 2011, 27(18):11514-11519. doi: 10.1021/la202583w
    [14] CHU Qi, LIN Ling, SU Junlin. Amidocyanogen silanol as a high-temperature-resistant shale inhibitor in water-based drilling fluid[J]. Applied Clay Science, 2020, 184:105396. doi: 10.1016/j.clay.2019.105396
    [15] ZHANG Fan, SUN Jinsheng, DAI Zhi, et al. Organosilicate polymer as high temperature Resistent inhibitor for water-based drilling fluids[J]. Journal of Polymer Research, 2020, 27(5):1-13.
    [16] MAO Hui, QIU Zhengsong, SHEN Zhonghou, et al. Hydrophobic associated polymer based silica nanoparticles composite with core–shell structure as a filtrate reducer for drilling fluid at utra-high temperature[J]. Journal of Petroleum Science and Engineering, 2015, 129:1-14. doi: 10.1016/j.petrol.2015.03.003
    [17] MUELLER R, KAMMLER H K, WEGNER K, et al. OH surface density of SiO2 and TiO2 by thermogravimetric analysis[J]. Langmuir, 2003, 19(1):160-165. doi: 10.1021/la025785w
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  748
  • HTML全文浏览量:  297
  • PDF下载量:  161
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-03
  • 修回日期:  2021-12-23
  • 录用日期:  2021-12-25
  • 网络出版日期:  2022-08-10
  • 刊出日期:  2022-05-30

目录

    /

    返回文章
    返回