留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

满深区块深井强封堵钻井液技术

喻化民 薛莉 吴红玲 李海彪 冯丹 杨冀平 鲁娜

喻化民,薛莉,吴红玲,等. 满深区块深井强封堵钻井液技术[J]. 钻井液与完井液,2022,39(2):171-179 doi: 10.12358/j.issn.1001-5620.2022.02.007
引用本文: 喻化民,薛莉,吴红玲,等. 满深区块深井强封堵钻井液技术[J]. 钻井液与完井液,2022,39(2):171-179 doi: 10.12358/j.issn.1001-5620.2022.02.007
YU Huamin, XUE Li, WU Hongling, et al.Drilling fluid with superior plugging performance used in deep well drilling in manshen block[J]. Drilling Fluid & Completion Fluid,2022, 39(2):171-179 doi: 10.12358/j.issn.1001-5620.2022.02.007
Citation: YU Huamin, XUE Li, WU Hongling, et al.Drilling fluid with superior plugging performance used in deep well drilling in manshen block[J]. Drilling Fluid & Completion Fluid,2022, 39(2):171-179 doi: 10.12358/j.issn.1001-5620.2022.02.007

满深区块深井强封堵钻井液技术

doi: 10.12358/j.issn.1001-5620.2022.02.007
基金项目: 中石油渤海钻探工程技术研究院科技项目“塔河地区深井强封堵钻井液技术研究与应用”(2021Y21K)
详细信息
    作者简介:

    喻化民,高级工程师,1981年生,2005年毕业于长江大学应用化学专业,现在从事钻井液技术研究与应用工作。E-mail:93331573@qq.com

  • 中图分类号: TE254.4

Drilling Fluid with Superior Plugging Performance Used in Deep Well Drilling in Manshen Block

  • 摘要: 满深区块中深部地层断裂破碎,微裂缝发育,且黏土矿物含量高,组分差异大,硬脆性和水敏性泥页岩相互共存,钻井过程中易发生水力劈裂和水化不等速膨胀而导致的井壁失稳。为此,提出了“物理支撑+化学抑制封堵”防塌技术对策,并构建了多元协同防塌强封堵钻井液。室内评价表明:强封堵钻井液抗温达180 ℃;抗10%饱和盐水污染;T层和S层岩样滚动回收率高达89.36%和91.33%、膨胀率低至7.3%和4.2%;能有效封堵20~120目不同粒径石英砂间微孔隙。该钻井液在ManS5-H4井现场应用中性能稳定,流变性好,滤失量低,具有较好的抑制和防塌性能,解决了中深部地层阻卡、坍塌掉块和扩径等井壁失稳问题,井眼通畅规则,二、三开井段平均井径扩大率分别为4.28%和6.75%,返出岩屑代表性好,无钻井液事故发生,能满足复杂地层复杂工艺钻进需要,提高了钻井综合效益。

     

  • 图  1  强封堵钻井液抑制性评价实验结果对比图

    图  2  ManS5-H4实钻钻井液性能

    图  3  ManS5-H4井井径扩大率

    表  1  满深区块各层段黏土矿物组分平均相对含量


    样品数
    (个)
    黏土矿物组份相对含量/%混层比/%
    IKCI/SC/SI/S混层C/S混层
    J815.6065.9011.407.10 25 
    T77.806.307.3078.60 75~100 
    P413.8013.0014.0059.20 65~85 
    P513.607.806.2061.401150~65 
    C638.805.709.7045.80 50~80 
    C516.6054.408.8020.20 15~25 
    D1922.167.268.4262.16 20~70 
    D818.257.6253.7520.38 15~30 
    S1240.756.5815.2537.42 20 
    S627.6710.5014.3020.2027.332020~30
    S1420.282.5745.7131.44 20 
    O2344.489.2622.5223.74 20 
    下载: 导出CSV

    表  2  KCl加量对钻井液性能的影响

    KCl/
    %
    实验条件回收率/
    %
    ρ/
    g·cm−3
    PV/
    mPa∙s
    YP/
    Pa
    Gel/
    Pa/Pa
    FLAPI/
    mL
    0常温80.601.302018.56.0/9.56.8
    80 ℃×16 h1.302221.06.5/11.56.0
    1常温87.601.321519.05.5/6.58.0
    80 ℃×16 h1.321821.05.5/6.56.8
    3常温89.061.321517.04.5/5.58.3
    80 ℃×16 h1.321817.54.5/5.57.4
    5常温94.061.321517.04.0/5.08.6
    80 ℃×16 h1.321717.53.5/4.57.8
    7常温95.801.321516.03.5/5.09.0
    80 ℃×16 h1.321717.03.0/4.58.2
    10常温93.841.321516.03.5/4.510.4
    80 ℃×16 h1.321816.03.0/4.59.6
     注:配方:3%膨润土+0.3%Na2CO3+0.1%NaOH+0.6%
    IND30+0.5%NH4-HPAN-2+0.5%THJN+加重剂;pH值为9
    下载: 导出CSV

    表  3  在基浆中加入不同防塌剂的性能(150 ℃、16 h)

    防塌剂PV/
    mPa·s
    YP/
    Pa
    Gel/
    Pa/Pa
    FLAPI/
    mL
    FLHTHP/mL
    120 ℃150 ℃
    051.51.0/3.012.020.025.0
    2%SY-A0163.02.0/4.07.014.818.5
    2%FT34281.50.5/1.57.816.421.0
    3% DYFT-285.01.5/5.04.413.617.0
    2%FT10361.00.5/2.57.617.626.0
    3%FT-160.50.5/2.08.918.019.2
    3%FT-1A103.51.5/3.54.814.217.6
    3%RLQ-282.00.5/3.07.215.519.0
    2%YX52.01.5/4.010.816.824.2
     注:基浆为:5%膨润土浆+5%SMP-3+5%SPNH+7%KCl+
    0.2%NaOH
    下载: 导出CSV

    表  4  封堵防塌剂优选复配性能评价实验(150 ℃、16 h)

    防塌剂PV/mPa·sYP/PaGel/(Pa/Pa)FLAPI/mLFLHTHP/mL
    051.51.0/3.012.025.0
    2%DYFT-2+2%FT-1A92.52.5/5.06.817.2
    2%DYFT-2+2%FT-1A +2%SYA01102.52.5/6.55.515.6
    2%DYFT-2+2%FT-1A +2%YX94.52.5/6.54.014.8
    2%DYFT-2+2%FT-1A+2%YX+2%SQD-98(细)125.03.0/8.03.213.2
    2%DYFT-2+2%FT-1A+2%YX+2%DF-195.03.0/7.03.614.2
     注:FLHTHP在150 ℃测定
    下载: 导出CSV

    表  5  降滤失剂优选性能评价实验(150 ℃、16 h)

    降滤失剂PV/mPa·sYP/PaGel/(Pa/Pa)FLAPI/mLFLHTHP/mL
    094.02.0/6.04.515.2
    0.3%CMC-LV156.01.5/7.02.814.6
    0.5%XCD-LV153.54.5/7.512.422.0
    0.3%PAC-LV217.01.5/9.02.213.8
    0.5%Redul185.01.0/8.52.314.0
    0.3%PAC-LV+0.5%Redul3116.02.0/11.01.88.6
    0.3%PAC-LV+2%KJAN2212.02.5/10.03.010.4
    0.3%PAC-LV+0.5%NH4-HPAN-2268.51.5/10.52.812.4
    0.3%PAC-LV+2%JNF-3185.01.5/8.52.09.2
    0.3%PAC-LV+2%TYJS-1165.01.5/6.52.49.8
     注:基浆配方:5%膨润土浆+0.4%NaOH +3%SMP-3+3%SPNH +7%KCl +2% DYFT-2 +2%FT-1A +2%YX+2%润滑剂;钻井液密度为1.36 g/cm3FLHTHP在150 ℃测定
    下载: 导出CSV

    表  6  强封堵钻井液抗温性能评价实验

    测试
    条件
    PV/
    mPa·s
    YP/
    Pa
    Gel/
    Pa/Pa
    FLAPI/
    mL
    FLHTHP/
    mL
    pH
    老化前206.02.5/11.03.29
    150 ℃、16 h185.03.0/9.02.89.69
    150 ℃、24 h185.02.5/9.02.89.89
    150 ℃、48 h174.02.0/7.03.010.69
    180 ℃、16 h162.51.5/5.54.514.29
     注:钻井液密度为1.36 g/cm3FLHTHP在150 ℃测定
    下载: 导出CSV

    表  7  强封堵钻井液钻井液砂床封堵性评价实验

    砂床粒径/目砂床高度/cmP/MPat/min侵入深度/cm
    20~40 30 0.7 480 4.9
    40~80 30 0.7 480 4.2
    80~100 30 0.7 480 3.4
    100~120 30 0.7 480 2.6
    下载: 导出CSV

    表  8  在强封堵钻井液中加入饱和盐水的抗盐水污染性能

    饱和盐水/
    %
    ρ/
    g·cm−3
    PV/
    mPa·s
    YP/
    Pa
    Gel/
    Pa/Pa
    FLAPI/
    mL
    FLHTHP/
    mL
    pH
    01.36185.03.0/9.02.89.59.0
    51.35175.03.0/8.03.011.89.0
    101.33143.52.0/5.53.814.68.5
    151.28123.01.0/3.05.219.88.0
    201.25111.00.5/1.05.822.48.0
    下载: 导出CSV
  • [1] 杨海军,邓兴梁,张银涛,等. 塔里木盆地满深1井奥陶系超深断控碳酸盐岩油气藏勘探重大发现及意义[J]. 中国石油勘探,2020,25(3):13-23. doi: 10.3969/j.issn.1672-7703.2020.03.002

    YANG Haijun, DENG Xingliang, ZHANG Yintao, et al. Great discovery and its significance of exploration for ordovician ultra-deep fault-controlled carbonate reservoirs of well Manshen 1 in Tarim basin[J]. China Petroleum Exploration, 2020, 25(3):13-23. doi: 10.3969/j.issn.1672-7703.2020.03.002
    [2] 袁国栋, 王鸿远, 陈宗琦, 等. 塔里木盆地满深1井超深井钻井关键技术[J]. 石油钻探技术, 2020, 48(4): 21-27.

    YUAN Guodong, WANG Hongyuan, CHEN Zongqi, et al. Key drilling technologies for the ultra-deep well Manshen 1 in the Tarim basin[J].Petroleum Drilling Techniques, 2020, 48(4): 21-27.
    [3] 吴柏志, 张怀兵. 满深1井碳酸盐岩地层自愈合水泥浆固井技术[J]. 石油钻探技术, 2021, 49(1): 67-73

    WU Bozhi, ZHANG Huaibing.Self-healing cementing technology in carbonate formation of Manshen 1 well[J]. Petroleum Drilling Techniques, 2021, 49(1): 67-73
    [4] 翟科军,于洋,刘景涛,等. 顺北油气田火成岩侵入体覆盖区超深井优快钻井技术[J]. 石油钻探技术,2020,48(2):1-5. doi: 10.11911/syztjs.2020004

    ZHAI Kejun, YU Yang, LIU Jingtao, et al. Ultra-deep well drilling technology in the igneous invasion coverage area of the Shunbei oil and gas field[J]. Petroleum Drilling Techniques, 2020, 48(2):1-5. doi: 10.11911/syztjs.2020004
    [5] 林永学, 王伟吉, 金军斌. 顺北油气田鹰1井超深井段钻井液关键技术[J]. 石油钻探技术, 2019, 47(3): 113-120.

    LIN Yongxue, WANG Weiji, JIN Junbin. Key drilling fluid technology in the ultra deep section of well Ying-1 in the Shunbei oil and gas field[J]. Petroleum Drilling Techniques, 2019, 47(3): 113-120.
    [6] 董小虎,李银婷. 塔里木盆地顺北区块二叠系井漏复杂的分析及对策[J]. 探矿工程(岩土钻掘工程),2020,47(2):59-62.

    DONG Xiaohu, LI Yinting. Analysis and countermeasures for complex Permian well leakage in the Shunbei block of Tarim basin[J]. Exploration Engineering ( Rock & Soil Drilling and Tunneling), 2020, 47(2):59-62.
    [7] 于得水,徐泓,吴俢振,等. 满深1井奥陶系桑塔木组高性能防塌水基钻井液技术[J]. 石油钻探技术,2020,48(5):49-54. doi: 10.11911/syztjs.2020070

    YU Deshui, XU Hong, WU Xiuzhen, et al. High performance anti-collapse water-base drilling fluid technology of ordovician Santamu formation in well Manshen1[J]. Petroleum Drilling Techniques, 2020, 48(5):49-54. doi: 10.11911/syztjs.2020070
    [8] 邱春阳,张翔宇,赵红香,等. 顺北区块深层井壁稳定钻井液技术[J]. 天然气勘探与开发,2021,44(2):81-86.

    QIU Chunyang, ZHANG Xiangyu, ZHAO Hongxiang, et al. Drilling-fluid system for deep borehole stability in Shunbei block, Tarim basin[J]. Natural Gas Exploration and Development, 2021, 44(2):81-86.
    [9] 李成,白杨,于洋,等. 顺北油田破碎地层井壁稳定钻井液技术[J]. 钻井液与完井液,2020,37(1):15-22.

    LI Cheng, BAI Yang, YU Yang, et al. Study and application of drilling fluid technology for stabilizing fractured formations in Shunbei oilfield[J]. Drilling Fluid & Completion Fluid, 2020, 37(1):15-22.
    [10] 陈修平,李双贵,于洋,等. 顺北油气田碳酸盐岩破碎性地层防塌钻井液技术[J]. 石油钻探技术,2020,48(2):12-16. doi: 10.11911/syztjs.2020005

    CHEN Xiuping,LI Shuanggui,YU Yang, et al. Anti-collapse drilling fluid technology for broken carbonate formation in Shunbei oil and gas field[J]. Petroleum Drilling Techniques, 2020, 48(2):12-16. doi: 10.11911/syztjs.2020005
    [11] 金军斌. 塔里木盆地顺北区块超深井火成岩钻井液技术[J]. 石油钻探技术,2016,44(6):17-23.

    JIN Junbin. Drilling fluid technology for igneous rocks in ultra-deep wells in the Shunbei area, Tarim basin[J]. Petroleum Drilling Techniques, 2016, 44(6):17-23.
    [12] 谢俊, 司西强, 赵虎, 等. 顺北深井磺化钻井液起泡原因及解决思路[J]. 精细石油化工进展, 2019, 20(6): 1-6.

    XIE Jun, SI Xiqiang, ZHAO Hu, et al. Discussion on causes of sulfonated drilling fluid foaming and solution to this problem in deep wells of Shunbei oilfield[J]. Advances in Fine Petrochemicals, 2019, 20(6): 1-6.
    [13] 吴雄军,林永学,宋碧涛,等. 顺北油气田奥陶系破碎性地层油基钻井液技术[J]. 钻井液与完井液,2020,37(6):701-708. doi: 10.3969/j.issn.1001-5620.2020.06.004

    WU Xiongjun, LIN Yongxue, SONG Bitao, et al. Oil base drilling fluid technology for drilling broken ordovician formation in Shunbei block[J]. Drilling Fluid & Completion Fluid, 2020, 37(6):701-708. doi: 10.3969/j.issn.1001-5620.2020.06.004
    [14] 黄维安,牛晓,沈青云,等. 塔河油田深侧钻井防塌钻井液技术[J]. 石油钻探技术,2016,44(2):51-57. doi: 10.11911/syztjs.201602009

    HUANG Weian, NIU Xiao, SHEN Qingyun, et al. Anti-sloughing dring fluid technology for deep sidetracking wells in the Tahe oilfield[J]. Petroleum Drilling Techniques, 2016, 44(2):51-57. doi: 10.11911/syztjs.201602009
    [15] 胡广强,白彬珍,柯珂. 顺北区块辉绿岩井段井壁稳定性分析[J]. 中国海上油气,2017,29(5):119-125.

    HU Guangqiang, BAI Binzhen, KE Ke. Analysis on borehole instability mechanism of diabase in Shunbei block[J]. China Offshore Oil and Gas, 2017, 29(5):119-125.
    [16] 程善平,鄢家宇,曹鹏,等. 塔里木泛哈拉哈塘桑塔木组硬脆性泥岩井壁失稳机理及对策[J]. 钻采工艺,2018,41(5):23-25. doi: 10.3969/J.ISSN.1006-768X.2018.05.07

    CHENG Shanping, YAN Jiayu, CAO Peng, et al. study on instability mechanism of hardbrittle mudstone borehole wall at sangtamu group in halahatang block of tarim oilfield and countermeasures[J]. drilling & production technology, 2018, 41(5):23-25. doi: 10.3969/J.ISSN.1006-768X.2018.05.07
    [17] 刘锋报,邵海波,周志世,等. 哈拉哈塘油田硬脆性泥页岩井壁失稳机理及对策[J]. 钻井液与完井液,2015,32(1):38-41. doi: 10.3969/j.issn.1001-5620.2015.01.10

    LIU Fengbao, SHAO Haibo, ZHOU Zhishi, et al. Mechanism and strategy to deal with borehole instability of hard and brittle shales in Halahatang oilfield.[J]. Drilling Fluid & Completion Fluid, 2015, 32(1):38-41. doi: 10.3969/j.issn.1001-5620.2015.01.10
    [18] 范胜,宋碧涛,陈曾伟,等. 顺北5-8井志留系破裂性地层提高承压能力技术[J]. 钻井液与完井液,2019,36(4):431-436. doi: 10.3969/j.issn.1001-5620.2019.04.006

    FAN Sheng, SONG Bitao, CHEN Zengwei, et al. Technology for enhancing pressure bearing capacity of fractured silurian system in well Shunbei 5-8[J]. Drilling Fluid & Completion Fluid, 2019, 36(4):431-436. doi: 10.3969/j.issn.1001-5620.2019.04.006
  • 加载中
图(3) / 表(8)
计量
  • 文章访问数:  625
  • HTML全文浏览量:  263
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-26
  • 修回日期:  2021-11-21
  • 录用日期:  2021-10-21
  • 刊出日期:  2022-06-23

目录

    /

    返回文章
    返回