留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

抗高温聚合物纳米微球封堵剂的合成与性能评价

黄乘升 褚奇 李涛 刘金华

黄乘升,褚奇,李涛,等. 抗高温聚合物纳米微球封堵剂的合成与性能评价[J]. 钻井液与完井液,2022,39(2):139-145 doi: 10.12358/j.issn.1001-5620.2022.02.002
引用本文: 黄乘升,褚奇,李涛,等. 抗高温聚合物纳米微球封堵剂的合成与性能评价[J]. 钻井液与完井液,2022,39(2):139-145 doi: 10.12358/j.issn.1001-5620.2022.02.002
HUANG Chengsheng, CHU Qi, LI Tao, et al.The synthesis and evaluation of a high temperature nano micro-spherical polymer plugging agent[J]. Drilling Fluid & Completion Fluid,2022, 39(2):139-145 doi: 10.12358/j.issn.1001-5620.2022.02.002
Citation: HUANG Chengsheng, CHU Qi, LI Tao, et al.The synthesis and evaluation of a high temperature nano micro-spherical polymer plugging agent[J]. Drilling Fluid & Completion Fluid,2022, 39(2):139-145 doi: 10.12358/j.issn.1001-5620.2022.02.002

抗高温聚合物纳米微球封堵剂的合成与性能评价

doi: 10.12358/j.issn.1001-5620.2022.02.002
基金项目: 国家自然科学基金重大项目“页岩油气高效开发基础理论研究”(51490650)
详细信息
    作者简介:

    黄乘升,高级工程师,1973年生,毕业于中国地质大学(武汉)钻探专业,现在从事钻井工程技术研究与现场技术管理工作。E-mail:huangcs.oshd@sinopec.com

    通讯作者:

    褚奇,E-mail:chuqi.sripe@sinopec.com

  • 中图分类号: TE254.4

The Synthesis and Evaluation of a High Temperature Nano Micro-Spherical Polymer Plugging Agent

  • 摘要: 针对目前钻井用柔性封堵剂抗温性弱的问题,开展了抗高温聚合物纳米微球封堵剂的研究。以丙烯酰胺(AM)、对苯乙烯磺酸钠(SSS)、丙烯酸钠(AAS)、丙烯酸十三氟辛酯(TEAC)和1,3,5-三(甲基丙烯酰胺基甲酸酯)苯(B-TMAC)为原料,偶氮异丁氰基甲酰胺(CABN)为引发剂,十二烷基硫醇(TDDM)为分子量调节剂,通过自由基胶束聚合法合成了聚合物纳米微球OPTB。通过正交实验确定了最佳合成条件:反应温度105 ℃、反应时间20 h、反应单体浓度7.5%、CABN浓度0.4%和TDDM浓度1.5%。借助核磁共振光谱仪(1H-NMR)进行了分子结构表征。OPTB的钻井液性能测试结果显示,OPTB对钻井液的流变性能影响较小,滤失造壁性能显著。高温老化后,OPTB的粒径仍呈单分散状态。OPTB的加量达到3.0%时,对纳微米孔隙的封堵率高达90.84%,且可有效减慢井筒内液柱压力向地层传递的速度。采用扫描电镜(ESEM)观测了160 ℃老化16 h前后的OPTB的微观形貌,结果显示 OPTB颗粒呈球形,粒径较均一,高温作用仍有部分颗粒仍保持单分散状态。

     

  • 图  1  B-TMAC的1H-NMR光谱

    图  2  OPTB的1H-NMR光谱

    图  3  OPTB的粒度分布图

    图  4  压力传递测试实验

    图  5  OPTB的SEM照片

    表  1  L16(45)正交实验

    水平ABCDE
    反应温
    度/℃
    反应时
    间/h
    反应单体
    浓度/%
    CABN
    浓度/%
    TDDM
    浓度/%
    110085.00.20.5
    2105127.50.41.0
    31101610.00.61.5
    41152012.50.82.0
    下载: 导出CSV

    表  2  L16(45)正交实验结果

    实验号ABCDE封堵率/%
    1#10085.00.20.0187.5
    2#100127.50.40.0288.2
    3#1001610.00.60.0390.3
    4#1002012.50.80.0491.2
    5#10587.50.60.0490.5
    6#105125.00.80.0395.0
    7#1051612.50.20.0293.2
    8#1052010.00.40.0191.7
    9#110810.00.80.0291.4
    10#1101212.50.60.0184.2
    11#110165.00.40.0492.2
    12#110207.50.20.0395.8
    13#115812.50.40.0395.5
    14#1151210.00.20.0487.4
    15#115167.50.80.0189.9
    16#115205.00.60.0287.0
    均值189.30091.22590.42590.97588.325
    均值292.60088.70091.10091.90089.950
    均值390.90091.40090.20088.00094.150
    均值489.95091.42591.02591.87590.325
    极差(R)3.3002.7250.9003.9005.825
    下载: 导出CSV

    表  3  钻井液流变性能及滤失性能测试结果

    OPTB/
    %
    T老化/
    AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    FLAPI/
    mL
    FLHTHP/
    mL
    010016.011.05.012.632.0
    12016.011.05.013.032.6
    14015.511.04.514.435.0
    16014.510.04.516.840.0
    18012.08.04.018.860.4
    1.010017.512.05.59.223.4
    12017.012.05.09.224.0
    14016.011.05.09.624.8
    16015.010.05.011.827.2
    18011.58.03.518.658.4
    2.010017.512.05.58.620.2
    12016.511.05.58.821.6
    14016.511.05.59.022.4
    16015.511.04.510.824.0
    18011.58.03.518.458.0
    3.010018.513.05.58.019.6
    12017.512.05.58.220.8
    14017.012.05.08.622.0
    16016.011.05.010.023.4
    18012.08.04.018.057.6
      注:磺化钻井液体系:4.0%预水化膨润土浆+0.3%PAC-
    HV+1.0%SMC+1.0%SMP-I+1.0%SPNH
    下载: 导出CSV

    表  4  OPTB对模拟纳微米孔隙地层封堵率的测试结果

    OPTB/
    %
    T老化/
    平均流量/
    cm2·s−1
    渗透率/
    10−2 mD
    封堵率/
    %
    1.01000.151239.2689.84
    1200.208954.2485.96
    1400.345589.7076.79
    1600.4718122.4968.30
    2.01000.087522.7294.12
    1200.137235.6290.78
    1400.159841.4989.26
    1600.191749.7787.12
    3.01000.050012.9896.64
    1200.091623.7893.85
    1400.125132.4891.59
    1600.136435.4190.84
      注: 模拟纳微米级孔隙地层的渗透率为386.4×10−2 mD,
    磺化钻井液的流量为1.4883 cm2·s−1
    下载: 导出CSV
  • [1] 闫丽丽,李丛俊,张志磊,等. 基于页岩气“水替油”的高性能水基钻井液技术[J]. 钻井液与完井液,2015,32(5):1-6.

    YAN Lili, LI Congjun, ZHANG Zhilei, et al. High performance water base drilling fluid for shale gas drilling[J]. Drilling Fluid & Completion Fluid, 2015, 32(5):1-6.
    [2] 孟英峰,刘厚彬,余安然,等. 深层脆性页岩水平井裸眼完井井壁稳定性研究[J]. 西南石油大学学报(自然科学版),2019,41(6):51-59.

    MENG Yingfeng, LIU Houbin, YU Anran, et al. Borehole completion stability of deep brittle shale horizontal wells[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2019, 41(6):51-59.
    [3] 温航,陈勉,金衍,等. 硬脆性泥页岩斜井段井壁稳定力学耦合研究[J]. 石油勘探与开发,2019,41(6):748-754.

    WEN Hang, CHEN Mian, JIN Yan, et al. A chemo-mechanical coupling model of deviated borehole stability in hard brittle shale[J]. Petroleum Exploration and Development, 2019, 41(6):748-754.
    [4] 陶士先,胡继良,纪卫军. 水敏性地层钻探用接枝淀粉聚合物泥浆体系研究[J]. 地质与勘探,2012,48(5):1029-1033.

    TAO Shixian, HU Jiliang, JI Weijun. Study of the grafted starch-polymer mud system used for drilling in water-sensitive strata[J]. Geology and Exploration, 2012, 48(5):1029-1033.
    [5] 何振奎. 页岩水平井斜井段强抑制强封堵水基钻井液技术[J]. 钻井液与完井液,2013,30(2):43-46. doi: 10.3969/j.issn.1001-5620.2013.02.013

    HE Zhenkui. Strong hibition and sealing water based drilling fluid technology for deviated section of shale horizontal[J]. Drilling Fluid & Completion Fluid, 2013, 30(2):43-46. doi: 10.3969/j.issn.1001-5620.2013.02.013
    [6] 罗霄,都伟超,蒲晓林,等. 抗高温有机硅-胺类抑制剂的研制与性能研究[J]. 油田化学,2016,33(4):575-579.

    LUO Xiao, DU Weichao, PU Xiaolin, et al. Preparation and performance of high-temperature tolerant organosilicon-amine inhibitor for drilling fluid[J]. Oilfield Chemistry, 2016, 33(4):575-579.
    [7] 邱正松,钟汉毅,黄维安. 新型聚胺页岩抑制剂特性及作用机理[J]. 石油学报,2011,32(4):678-682. doi: 10.7623/syxb201104017

    QIU Zhengsong, ZHONG Hanyi, HUANG Weian. Properties and mechanism of a new polyamine shale inhibitor[J]. Acta Petrolei Sinica, 2011, 32(4):678-682. doi: 10.7623/syxb201104017
    [8] 褚奇,李涛,王栋,等. 龙凤山气田强抑制封堵型防塌钻井液技术[J]. 钻井液与完井液,2016,33(5):35-40.

    CHU Qi, LI Tao, WANG Dong, et al. Plugging inhibitive drilling fluid used in Longfengshan gas field[J]. Drilling Fluid & Completion Fluid, 2016, 33(5):35-40.
    [9] 褚奇,孔勇,杨帆,等. 多苯基芳基硅烷偶联剂改性纳米SiO2封堵剂[J]. 断块油气田,2017,24(2):281-284.

    CHU Qi, KONG Yong, YANG Fan, et al. Nano-silica dioxide plugging agent modified by polyphenyl aryl silanes coupling agent[J]. Fault-Block Oil & Gas Field, 2017, 24(2):281-284.
    [10] 马成云,宋碧涛,徐同台,等. 钻井液用纳米封堵剂研究进展[J]. 钻井液与完井液,2017,34(1):1-8. doi: 10.3969/j.issn.1001-5620.2017.01.001

    MA Chengyun, SONG Bitao, XU Tongtai, et al. Progresses in studying drilling fluid nano material plugging agents[J]. Drilling Fluid & Completion Fluid, 2017, 34(1):1-8. doi: 10.3969/j.issn.1001-5620.2017.01.001
    [11] 于洪江,拓丹,熊迅宇. 成膜性纳米微乳液封堵剂的制备与评价[J]. 应用化工,2018,47(1):92-95. doi: 10.3969/j.issn.1671-3206.2018.01.023

    YU Hongjiang, TUO Dan, XIONG Xunyu. Preparation and evaluation of film-forming nano microemulsion plugging agent[J]. Applied Chemical Industry, 2018, 47(1):92-95. doi: 10.3969/j.issn.1671-3206.2018.01.023
    [12] 向朝纲,蒲晓林,陈勇. 新型封堵剂FDJ-EF封堵特性及作用机理[J]. 断块油气田,2012,19(2):249-252.

    XIANG Chaogang, PU Xiaolin, CHEN Yong. Characteristics of novel sealing agent FDJ-EF and its sealing mechanism[J]. Fault-Block Oil & Gas Field, 2012, 19(2):249-252.
    [13] GB/T 16783-1997, 水基钻井液现场测试程序[S].

    GB/T 16783-1997, Water-based drilling fluid field test procedure[S].
    [14] 刘洋洋,邓明毅,谢刚,等. 基于压力传递的钻井液纳米封堵剂研究与应用[J]. 钻井液与完井液,2017,34(6):24-28. doi: 10.3969/j.issn.1001-5620.2017.06.005

    LIU Yangyang, DENG Mingyi, XIE Gang, et al. Study and application of a drilling fluid plugging agent based on pressure transfer inhibition[J]. Drilling Fluid & Completion Fluid, 2017, 34(6):24-28. doi: 10.3969/j.issn.1001-5620.2017.06.005
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  626
  • HTML全文浏览量:  294
  • PDF下载量:  163
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-09
  • 修回日期:  2021-12-19
  • 录用日期:  2021-11-09
  • 刊出日期:  2022-06-23

目录

    /

    返回文章
    返回