留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

油基钻井液用改性锂皂石增黏提切剂

倪晓骁 史赫 程荣超 张家旗 王建华

倪晓骁,史赫,程荣超,等. 油基钻井液用改性锂皂石增黏提切剂[J]. 钻井液与完井液,2022,39(2):133-138  doi: 10.12358/j.issn.1001-5620.2022.02.001
引用本文: 倪晓骁,史赫,程荣超,等. 油基钻井液用改性锂皂石增黏提切剂[J]. 钻井液与完井液,2022,39(2):133-138  doi: 10.12358/j.issn.1001-5620.2022.02.001
NI Xiaoxiao, SHI He, CHENG Rongchao, et al.A modified hectorite viscosifier and gelling agent for oil based drilling fluids[J]. Drilling Fluid & Completion Fluid,2022, 39(2):133-138 doi: 10.12358/j.issn.1001-5620.2022.02.001
Citation: NI Xiaoxiao, SHI He, CHENG Rongchao, et al.A modified hectorite viscosifier and gelling agent for oil based drilling fluids[J]. Drilling Fluid & Completion Fluid,2022, 39(2):133-138 doi: 10.12358/j.issn.1001-5620.2022.02.001

油基钻井液用改性锂皂石增黏提切剂

doi: 10.12358/j.issn.1001-5620.2022.02.001
基金项目: 中国石油天然气集团有限公司前瞻性基础性战略性技术攻关课题“高端钻完井处理剂和固井外加剂(超高温、极低温、纳米、超分子)研制”(2021DJ4401);中国石油天然气集团有限公司科学研究与技术开发课题“油田井筒工作液关键化学材料的开发与应用”(2020E-2803(JT))
详细信息
    作者简介:

    倪晓骁,博士,工程师,现在从事油基钻井液技术研究工作。电话 (010)80162064;E-mail:nixxdr@cnpc.com.cn

  • 中图分类号: TE254.4

A Modified Hectorite Viscosifier and Gelling Agent for Oil Based Drilling Fluids

  • 摘要:

    以正辛基三乙氧基硅烷和锂皂石为原料,利用溶胶-凝胶法一步合成了油基钻井液用增黏提切剂改性锂皂石MLap-1,分别利用红外光谱、热重分析、透射电镜和表面润湿性对其单体进行表征,证明其合成成功。通过对改性锂皂石MLap-1单剂评价发现,该剂能够提高油水比为80∶20乳液的乳化效率和破乳电压,在0.3%加量下,乳液破乳电压值达到1200 V以上,使得乳液的表观黏度和动切力由12 mPa·s和0 Pa增大至23 mPa·s和10 Pa,同时能够抗200 ℃高温。以改性锂皂石MLap-1为基础构建的高密度油基钻井液在200 ℃老化后,其动切力维持在4 Pa以上,低剪切速率切力维持在3 Pa以上,破乳电压高于1000 V,滤失量低于5.0 mL,很好地维护了钻井液的悬浮稳定性,保持了良好的乳化稳定性和降滤失效果。为油基钻井液进一步钻探深井、超深井提供了技术支持。

     

  • 图  1  改性锂皂石MLap-1反应示意图

    图  2  改性锂皂石MLap-1样品的红外光谱图

    图  3  改性锂皂石MLap-1热重分析曲线

    图  4  锂皂石改性前后透射电镜图

    图  5  锂皂石改性前后表面润湿性能对比图

    图  6  不同浓度改性锂皂石MLap-1 对乳液乳化效率的影响

    图  7  不同浓度改性锂皂石MLap-1对乳液破乳电压的影响

    图  8  改性锂皂石MLap-1抗温性能评价

    表  1  改性锂皂石MLap-1的增黏提切 性能评价及与同类产品对比

    样品AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    Gel/
    Pa/Pa
    3#121200.5/0.5
    3#+0.3%MLap-12313103.0/4.5
    3#+0.3%VERSAMOD161330.5/1.0
    3#+0.3%RHEMODTML181441.0/1.5
    下载: 导出CSV

    表  2  MLap-1对油基钻井液性能的影响

    T/
    ρ/
    g·cm−3
    PV/
    mPa·s
    YP/
    Pa
    LSYP/
    Pa
    FLHTHP/
    mL
    ES/
    V
    常温2.05075986
    2.26564919
    2.48264844
    1802.049653.01021
    2.263543.21245
    2.481443.61336
    2002.047543.41074
    2.259534.01308
    2.474434.81389
      注:高温老化时间为16 h,高温高压滤失量测量温度为180 ℃
    下载: 导出CSV
  • [1] 王中华. 国内钻井液技术进展评述[J]. 石油钻探技术,2019,47(3):95-102. doi: 10.11911/syztjs.2019054

    WANG Zhonghua. Review of progress on drilling fluid technology in China[J]. Petroleum Drilling Techniques, 2019, 47(3):95-102. doi: 10.11911/syztjs.2019054
    [2] JIANG G, NI X, YANG L, et al. Synthesis of superamphiphobic nanofluid as a multi-functional additive in oil-based drilling fluid, especially the stabilization performance on the water/oil interface[J]. Colloids and Surfaces A Physicochemical and Engineering Aspects, 2020(588):124385.
    [3] 黄贤斌. 抗高温高性能无土相油基钻井液技术研究[D]. 中国石油大学(北京), 2017.

    HUANG Xianbin. High-temperature high-performance organoclay-free oil-based drilling fluid technology research[D]. China University of Petroleum(Beijing), 2017.
    [4] 王星媛,陆灯云,吴正良. 抗220 ℃高密度油基钻井液的研究与应用[J]. 钻井液与完井液,2020,37(5):550-554,560.

    WANG Xingyuan, LU Dengyun, WU Zhengliang. Study and application of a high density oil base drilling fluid with high temperature resistance of 220 ℃[J]. Drilling Fluid & Completion Fluid, 2020, 37(5):550-554,560.
    [5] 赵素丽. 以季戊四醇为支化剂合成低黏度高切力钻井液提切剂[J]. 钻井液与完井液,2020,37(3):282-287. doi: doi:10.3969/j.issn.1001-5620.2020.03.003

    ZHAO Suli. A drilling fluid gelling agent synthesized with pentaerythritol as branching agent[J]. Drilling Fluid & Completion Fluid, 2020, 37(3):282-287. doi: doi:10.3969/j.issn.1001-5620.2020.03.003
    [6] 褚奇,石秉忠,李涛,等. 水基钻井液用低增黏提切剂的合成与性能评价[J]. 钻井液与完井液,2019,36(6):689-693. doi: doi:10.3969/j.issn.1001-5620.2019.06.005

    CHU Qi, SHI Bingzhong, LI Tao, et al. Synthesis and evaluation of a low viscosity gelling agent for water base drilling fluids[J]. Drilling Fluid & Completion Fluid, 2019, 36(6):689-693. doi: doi:10.3969/j.issn.1001-5620.2019.06.005
    [7] 孙金声,黄贤斌,蒋官澄,等. 无土相油基钻井液关键处理剂研制及体系性能评价[J]. 石油勘探与开发,2018,45(4):713-718.

    SUN Jinsheng, HUANG Xianbin, JIANG Guancheng, et al. Development of key additives for organoclay-free oil-based drilling mud and system performance evaluation[J]. Petroleum Exploration and Development, 2018, 45(4):713-718.
    [8] 蒋官澄,贺垠博,黄贤斌,等. 基于超分子技术的高密度无黏土油基钻井液体系[J]. 石油勘探与开发,2016,43(1):131-135. doi: 10.1016/S1876-3804(16)30015-5

    JIANG Guancheng, HE Yinbo, HUANG Xianbin, et al. A high-density organoclay-free oil base drilling fluid based on supramolecular chemistry[J]. P etroleum Exploration and Development, 2016, 43(1):131-135. doi: 10.1016/S1876-3804(16)30015-5
    [9] 薛文佳. 抗高温环保型增黏剂的合成与性能评价[J]. 石油钻探技术, 2016, 44(6): 67-73.

    XUE Wenjia. Synthesis and properties of high temperature resistance and environmental-friendly viscosifier[J]. Petroleum Drilling Techniques, 2016, 44(6): 67-73.
    [10] HEINZ M, DIANA M, NADJA H. Thickeners for oil-based drilling fluids: US, 2010/0256021A1[P]. 2010.
    [11] CARL J T. Suspending agent: US, 6908887B2 [P]. 2002.
    [12] 米远祝,罗跃,李建成,等. 油基钻井液聚合物增黏剂的合成及性能研究[J]. 钻井液与完井液,2013,30(2):6-9. doi: 10.3969/j.issn.1001-5620.2013.02.002

    MI Yuanzhu, LUO Yue, LI Jiancheng, et al. Synthesis and performance evaluation of polymer viscosifier for oil-based drilling fluid[J]. Drilling Fluid & Completion Fluid, 2013, 30(2):6-9. doi: 10.3969/j.issn.1001-5620.2013.02.002
    [13] 樊雪敏,方善宝,陈志兴,等. 纳米黏土锂皂石的研究现状与应用前景[J]. 中国组织工程研究,2021,25(10):1622-1627. doi: 10.3969/j.issn.2095-4344.3053

    FAN Xuemin, FANG Shanbao, CHEN Zhixing, et al. Status and application prospects of nano-clay Laponite[J]. Chinese Journal of Tissue Engineering Research, 2021, 25(10):1622-1627. doi: 10.3969/j.issn.2095-4344.3053
    [14] 熊正强,李晓东,付帆,等. 合成锂皂石用作超高温水基钻井液增黏剂实验研究[J]. 钻井液与完井液,2018,35(5):19-25. doi: doi:10.3969/j.issn.1001-5620.2018.05.004

    XIONG Zhengqiang, LI Xiaodong, FU Fan, et al. Mechanisms of synthetic hectorite to viscosify ultra-high temperature water base muds[J]. Drilling Fluid & Completion Fluid, 2018, 35(5):19-25. doi: doi:10.3969/j.issn.1001-5620.2018.05.004
    [15] HENCH L L, WEST J K. The sol-gel process[J]. Chemical Reviews, 1990, 90(1):33-72. doi: 10.1021/cr00099a003
    [16] HUANG Xianbin, SHEN Haokun, SUN Jinsheng, et al. Nanoscale laponite as a potential shale inhibitor in water-based drilling fluid for stabilization of wellbore stability and mechanism study[J]. Acs Applied Materials & Interfaces, 2018, 10:33252-33259.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  657
  • HTML全文浏览量:  260
  • PDF下载量:  193
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-12
  • 修回日期:  2021-12-11
  • 录用日期:  2021-11-21
  • 刊出日期:  2022-06-23

目录

    /

    返回文章
    返回