留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

HPAM溶液流变性与减阻关系

高航 方波 许可 卢拥军 俞路遥 刘博祥

高航,方波,许可,等. HPAM溶液流变性与减阻关系[J]. 钻井液与完井液,2022,39(1):100-106 doi: 10.12358/j.issn.1001-5620.2022.01.017
引用本文: 高航,方波,许可,等. HPAM溶液流变性与减阻关系[J]. 钻井液与完井液,2022,39(1):100-106 doi: 10.12358/j.issn.1001-5620.2022.01.017
GAO Hang, FANG Bo, XU Ke, et al.Study on relationship between rheology of HPAM solution and friction reduction[J]. Drilling Fluid & Completion Fluid,2022, 39(1):100-106 doi: 10.12358/j.issn.1001-5620.2022.01.017
Citation: GAO Hang, FANG Bo, XU Ke, et al.Study on relationship between rheology of HPAM solution and friction reduction[J]. Drilling Fluid & Completion Fluid,2022, 39(1):100-106 doi: 10.12358/j.issn.1001-5620.2022.01.017

HPAM溶液流变性与减阻关系

doi: 10.12358/j.issn.1001-5620.2022.01.017
基金项目: 国家科技重大专项课题“储层改造关键流体研发”(2017ZX05023003);中石油科技管理部项目“超高温清洁压裂液与变黏功能滑溜水研究”(2020B-4120)
详细信息
    作者简介:

    高航,在读硕士研究生,1996年生,毕业于华东理工大学化学工程专业。电话 18521335003;E-mail:harley_gao@163.com

  • 中图分类号: TE357

Study on Relationship between Rheology of HPAM Solution and Friction Reduction

  • 摘要: 通过研究不同浓度、不同分子量的HPAM溶液的流变及摩阻性能,建立了一个聚合物溶液摩阻系数方程。测试了5种不同浓度、4种不同分子量的HPAM溶液的稳态剪切黏度、触变性、流动曲线等流变性能;并分别测试其在管内径为0.77 cm,流量为3~9 L/min的压差数据,计算得摩阻系数数据,分析了聚合物分子量、聚合物浓度等对溶液减阻的影响,建立了聚合物溶液摩阻系数f和广义雷诺数Re及聚合物溶液流型参数n之间的摩阻系数方程。

     

  • 图  1  不同浓度的4种分子量HPAM溶液的170 s−1下稳态剪切黏度曲线

    图  2  不同浓度的4种分子量HPAM溶液的触变性

    图  3  不同浓度的4种HPAM溶液的流动曲线

    图  4  不同分子量HPAM溶液的压差流量变化曲线

    图  6  不同分子量HPAM溶液的减阻率变化曲线

    图  5  不同分子量HPAM溶液的摩阻系数曲线

    图  7  不同浓度HPAM溶液的压差流量变化曲线

    图  9  不同浓度HPAM溶液的减阻率变化曲线

    图  8  不同浓度HPAM溶液的摩阻系数曲线

    图  10  不同分子量HPAM溶液的$ {f}^{-0.5} $$ \mathrm{l}\mathrm{g}\left(Re{f}^{1-\frac{n}{2}}\right) $的关系曲线

    图  11  不同浓度HPAM的$ {f}^{-0.5} $$ \mathrm{l}\mathrm{g}\left(Re{f}^{1-\frac{n}{2}}\right) $的关系曲线

    表  1  不同浓度HPAM溶液流动曲线幂律模型拟合参数

    黏均分子量浓度/%K/Pa·snnR
    500万0.0051.7320.95570.9705
    0.012.2350.93340.9850
    0.025.1140.86310.9969
    0.037.1880.82520.9966
    0.0411.830.77320.9996
    1000万0.0051.8580.94370.9878
    0.012.9850.89370.9976
    0.029.6190.76630.9959
    0.0312.820.74920.9997
    0.0422.200.70150.9984
    1500万0.0053.1950.87610.9978
    0.014.1130.86140.9695
    0.028.9250.77860.9930
    0.0315.760.72230.9989
    0.0429.990.67910.9979
    2000万0.0052.5640.90740.9527
    0.014.2570.85780.9977
    0.0210.620.77320.9979
    0.0317.500.72300.9980
    0.0427.700.68420.9969
    下载: 导出CSV

    表  2  不同分子量HPAM溶液的$ {f}^{-0.5} $$ \mathrm{l}\mathrm{g}\left(Re{f}^{1-\frac{n}{2}}\right) $的线性函数拟合参数

    黏均分子量K/Pa·snn$ \frac{4}{{n}^{0.75}}+{\xi }_{1} $$ {\xi }_{1} $$ \frac{0.4}{{n}^{1.2}}+{\xi }_{2} $$ {\xi }_{2} $R
    500万7.1880.825217.1512.5320.8220.320.9992
    1000万12.820.749217.3712.4021.2720.700.9999
    1500万15.760.722316.1911.0818.3917.800.9997
    2000万17.500.723016.2211.1217.9717.380.9996
    下载: 导出CSV

    表  3  不同浓度HPAM的$ {f}^{-0.5} $$ \mathrm{l}\mathrm{g}\left(Re{f}^{1-\frac{n}{2}}\right) $的线性函数拟合参数

    浓度/%Kn$ \frac{4}{{n}^{0.75}}+{\xi }_{1} $$ {\xi }_{1} $$ \frac{0.4}{{n}^{1.2}}+{\xi }_{2} $$ {\xi }_{2} $R
    0.0051.8580.943716.6212.4423.3122.880.9993
    0.012.9850.893716.6212.2722.2221.760.9990
    0.029.6190.766316.6811.8019.8419.290.9998
    0.0312.820.749217.3712.4021.2720.700.9999
    0.0422.200.701517.0811.8620.2919.680.9980
    下载: 导出CSV
  • [1] 陈昊, 毕凯琳, 张军, 等. 非常规油气开采压裂用减阻剂研究进展[J]. 油田化学, 2021, 38(2): 347-359.

    CHEN Hao, BI Kailin, ZHANG Jun, et al. Progress of drag reducers used in slickwater hydrofracturing of unconventional hydrocarbons[J]. Oilfield Chemistry, 2021, 38(2): 347-359.
    [2] 张文龙, 伊卓, 杜凯, 等. 水溶性减阻剂在页岩气滑溜水压裂中的应用进展[J]. 石油化工, 2015, 44(1): 121-126.

    ZHANG Wenlong, YI Zhuo, DU Kai, et al. Recent advances in water-soluble friction reducers for slickwater hydraulic fracturing used in completion of shale gas[J]. Petrochemical Technology, 2015, 44(1): 121-126.
    [3] ASIDIN M A, SUALI E, JUSNUKIN T, et al. Review on the applications and developments of drag reducing polymer in turbulent pipe flow[J]. Chinese Journal of Chemical Engineering, 2019, 27(8): 1921-1932.
    [4] TOMS B A. Some observations on the flow of linear polymer solutions through straight tubes at large reynolds numbers [C]//Proceeding of First International Rheological, 1948: 135-141.
    [5] EDOMWONYI-OTU L C, ANGELI P. Separated oil-water flows with drag reducing polymers[J]. Experimental Thermal and Fluid Science, 2019, 102: 467-478.
    [6] GILLISSEN J J J. Polymer flexibility and turbulent drag reduction[J]. Physical Review E, 2008, 78(4): 1-6.
    [7] VIRK P S. Drag reduction fundamentals[J]. Aiche Journal, 1975, 21(4): 625-656.
    [8] GASLJEVIC K, AGUILAR G, MATTHYS E F. An improved diameter scaling correlation for turbulent flow of drag-reducing polymer solutions[J]. Journal of Non-newtonian Fluid Mechanics, 1999, 84(2): 131-148.
    [9] KARAMI H R, MOWLA D. A general model for predicting drag reduction in crude oil pipelines[J]. Journal of Petroleum Science and Engineering, 2013, 111: 78-86.
    [10] ZABIHI R, MOWLA D, KARAMI H R. Artificial intelligence approach to predict drag reduction in crude oil pipelines[J]. Journal of Petroleum Science and Engineering, 2019, 178: 586-593.
    [11] VARNASERI M, PEYGHAMBARZADEH S M. The effect of polyacrylamide drag reducing agent on friction factor and heat transfer coefficient in laminar, transition and turbulent flow regimes in circular pipes with different diameters[J]. International Journal of Heat and Mass Transfer, 2020, 154: 1-15.
    [12] HAN W, DONG Y, CHOI H. Applications of water-soluble polymers in turbulent drag reduction[J]. Processes, 2017, 5(2): 24-25.
    [13] 刘倩, 管保山, 刘玉婷, 等. 滑溜水压裂液用降阻剂的研究与应用进展[J]. 油田化学. 2020, 37(3): 545-551.

    LIU Qian, GUAN Baoshan, LIU Yuting, et al. Progress of development and application of drag reduction agents for slick-water fracturing[J]. Oilfield Chemistry, 2020, 37(3): 545-551.
    [14] 张世岭, 郭继香, 杨矞琦, 等. 滑溜水压裂液技术的发展现状[J]. 四川化工. 2015, 18(4): 21-24.

    ZHANG Shiling, GUO Jixiang, YANG Yuqi, et al. The development status of slickwater fracturing technology[J]. Sichuan Chemical Industry, 2015, 18(4): 21-24.
    [15] LIU D, WANG Q, WEI J. Experimental study on drag reduction performance of mixed polymer and surfactant solutions[J]. Chemical Engineering Research and Design, 2018, 132: 460-469.
    [16] 王春晓, 陆江银, 薄文敏. 高分子减阻剂减阻性能的影响因素研究[J]. 中国塑料. 2011, 25(6): 70-76.

    WANG Chunxiao, LU Jiangyin, BO Wenmin. Research on factors influencing drag reduction properties of polymer drag reducers[J]. China Plastics, 2011, 25(6): 70-76.
    [17] KARAMI H R, RAHIMI M, OVAYSI S. Degradation of drag reducing polymers in aqueous solutions[J]. Korean Journal of Chemical Engineering, 2018, 35(1): 34-43.
    [18] 方波. 化工流变学概论[M]. 北京: 中国纺织出版社, 2010: 136-142.

    FANG Bo. Introduction to chemical engineering rheology[M]. Beijing: China Textile and Apparel Press, 2010: 136-142.
    [19] METZNER A B, REED J C. Flow of non-newtonian fluids-correlation of the laminar, transition, and turbulent-flow regions[J]. Aiche Journal, 1955, 1(4): 434-440.
    [20] 方波, 邹春昱, 何良好, 等. 阳离子Gemini表面活性剂18-3-18/水杨酸钠胶束体系流变和减阻性能研究[J]. 高校化学工程学报. 2013, 27(1): 18-23.

    FANG Bo, ZOU Chunyu, HE Lianghao, et al. Rheologic and drag-reduction properties of cationic Gemini surfactant/sodium salicylate micelle systems[J]. Journal of Chemical Engineering of Chinese Universities, 2013, 27(1): 18-23.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  444
  • HTML全文浏览量:  214
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-23
  • 修回日期:  2021-11-02
  • 录用日期:  2021-09-23
  • 刊出日期:  2022-05-06

目录

    /

    返回文章
    返回