Effects of the Molecular Structure of Block Polymer Developed through RAFT Polymerization on Filtration Property of Drilling Fluids
-
摘要: 为了探究聚合物结构对降滤失剂性能的影响,选用AMPS作为阴离子组分、离子液体1-乙烯基-3-乙基咪唑溴盐(VeiBr)作为阳离子组分及AM作为中性组分,采用可逆加成断裂链转移自由基(RAFT)聚合法合成了一系列组成相同而结构不同的两性离子降滤失剂。通过调节单体加入顺序合成了3种结构精确、键接顺序不同、分子量分布窄且可控的聚合物结构,即无规共聚物、部分嵌段共聚物和完全嵌段共聚物,并评价了其流变性能、降滤失性能。结果显示在其他条件相同的条件下,无规分布聚合物的降滤失效果最好,而嵌段聚合物可用于制备高动塑比的流型调节剂。通过改变链转移剂加量,精确调节聚合物分子量,进一步分析了同一聚合物结构下不同分子量对其性能的影响。结果表明分子量越大,聚合物整体呈现黏度增大、降滤失性能得到改善的趋势。因此,无规序列结构的嵌段聚合物在钻井液降滤失剂中性能较好,同时分子量越大的聚合物更加具有优势,该研究为从结构出发研发高效降滤失剂提供了理论基础。Abstract: A series of isomeric zwitterionic filter loss reducers have been developed for investigating the effects of the molecular structure of polymers on their filtration control performance. These isomeric zwitterionic filter loss reducers were synthesized through reversible addition-fragmentation chain transfer polymerization (RAFT) with monomers such as AMPS (ionic monomer), 1-vinyl-3-ethylimidazollium bromide (VeiBr, as cationic monomer) and acrylamide (AM, as neutral monomer). By adjusting the sequence of adding different monomers, three copolymers, which are a random copolymer, a partial block polymer and a full block copolymer, respectively. These three copolymers have precise molecular structures, different bonding sequence (of atoms) and narrowly distributed and controllable molecular weights. Laboratory performance evaluation of these copolymers have shown that under the same test conditions, the random copolymer has the best filtration control performance, while the block copolymers can be used to make high YP/PV ratio flow pattern modifiers. By changing the concentration of the chain transfer agent, the molecular weight of the copolymers can be effectively adjusted, and this helps analyze the effects of copolymers with the same molecular structure and different molecular weights. It was found that the higher the molecular weight, the higher the viscosity and the better the filtration control performance of the copolymers. It is thus concluded that block polymers with random sequence structure are more suitable for filtration control in drilling fluids, and polymers with higher molecular weight will perform better in this aspect. This study has provided a theoretical base for developing high efficiency molecular structure oriented filter loss reducers.
-
Key words:
- RAFT polymerization /
- Block polymer /
- Filtrate reducer
-
表 1 聚合物结构对流变性及滤失性的影响
CTA/
%聚合物 AV/
mPa·sPV/
mPa·sYP/
PaFLAPI/
mL分子量/
kDaA1 36 27 9 7 99 0.05 B1 35 26 9 8 95 C1 34 20 14 29 81 A2 26 24 2 7 50 0.10 B2 23 20 3 9 42 C2 24 18 6 35 38 A3 19 14 5 20 35 0.15 B3 17 12 5 22 29 C3 16 7 8 42 23 -
[1] 安泽胜,陈昶乐,何军坡,等. 中国高分子合成化学的研究与发展动态[J]. 高分子学报,2019,50(10):1083-1132. doi: 10.11777/j.issn1000-3304.2019.19136AN Zesheng, CHEN Changle, HE Junpo,et al. Research and development of polymer aynthetic chemistry in China[J]. Acta Polymerica Sinica, 2019, 50(10):1083-1132. doi: 10.11777/j.issn1000-3304.2019.19136 [2] 张瑜. RAFT可控聚合法制备“活性”聚合物及其应用初探[D]. 湖北工业大学, 2020.ZHANG Yu. Preparation of “Living” polymer by RAFT controlled polymerization method and its basic application[D]. Hubei University of Technology, 2020. [3] CHIEFARI J, ERCOLE F, KRSTINA J, et al. Living free-radical polymerization by reversible addition-fragmentation chain transfer: The RAFT process[J]. Macromolecules, 1998, 31(16):5559-5562. doi: 10.1021/ma9804951 [4] 单莹莹,秦梦华,傅英娟. RAFT聚合在聚合物分子设计领域中的应用[J]. 造纸化学品,2012,24(3):1-8. doi: 10.3969/j.issn.1007-2225.2012.03.001SHAN Yingying, QIN Menghua, FU Yingjuan. Application development of RAFT polymerization in polymer molecular design[J]. Paper Chemicals, 2012, 24(3):1-8. doi: 10.3969/j.issn.1007-2225.2012.03.001 [5] 刘尧. RAFT法制备两亲性嵌段聚合物PAS及其在乳液聚合中的应用[D]. 长春工业大学, 2021.LIU Yao. Preparation of PAS amphiphilic block polymer by RAFT polymerization and its application in emulsion polymerization[D]. Changchun University of Technology, 2021. [6] 齐从丽,马喜平,吴建军. 新型两性离子聚合物在油田的应用现状[J]. 化工时刊,2004,18(6):20-24. doi: 10.3969/j.issn.1002-154X.2004.06.006QI Congli, MA Xiping, WU Jianjun. Application actuality of a new ampholytic polyelectrolytes in the oil field[J]. Chemical Industry Times, 2004, 18(6):20-24. doi: 10.3969/j.issn.1002-154X.2004.06.006 [7] 杨永启. RAFT热引发分散聚合和RAFT光引发溶液聚合制备高分子研究[D]. 上海大学, 2019.YANG Yongqi. Preparation of polymers by RAFT thermally initiated dispersion polymerization and RAFT photoinitiated solution polymerization[D]. Shanghai University, 2019. [8] YANG Lili, JIANG Guancheng, SHI Yawei, et al. Application of ionic liquid to a high-performance calcium-resistant additive for filtration control of bentonite/water-based drilling fluids[J]. Journal of Materials Science, 2017, 52(11): 6362-6375. [9] 杨丽丽,杨潇,蒋官澄,等. 含离子液体链段抗高温高钙降滤失剂[J]. 钻井液与完井液,2018,35(6):8-14. doi: 10.3969/j.issn.1001-5620.2018.06.002YANG Lili, YANG Xiao, JIANG Guancheng, et al. A high temperature calcium resistant filter loss reducer containing ionic liquid segments[J]. Drilling Fluid & Completion Fluid, 2018, 35(6):8-14. doi: 10.3969/j.issn.1001-5620.2018.06.002 [10] 罗明望, 张现斌, 王中秋, 等. 超高温低黏聚合物降滤失剂的研制及作用机理[J]. 钻井液与完井液, 2020, 37(5): 585-592.LUO Mingwang, ZHANG Xianbin, WANG Zhongqiu, et al. Preparation and working mechanisms of an ultra-high temperature low viscosity polymer filtrate reducer[J]. Drilling Fluid & Completion Fluid, 2020, 37(5): 585-592. [11] 李炎. 耐高温聚合物降滤失剂AAS的研制与性能评价[J]. 石油钻探技术, 2015, 43(4): 96-101.LI Yan. Development and performance evaluation of the high temperature resistant polymer fluid loss agent AAS[J]. Petroleum Drilling Techniques, 2015, 43(4): 96-101. [12] 黄博. 可控“活性”自由基聚合在含氟聚合物合成中的应用[J]. 有机氟工业,2021(2):37-45.HUANG Bo. Application of controlled “Living” radical polymerization in synthesis of fluoropolymers[J]. Fluorocarbon Industry, 2021(2):37-45. [13] 周年琛. 功能性RAFT试剂的合成及其应用研究[D]. 南京理工大学, 2008.ZHOU Nianchen. Study on the synthesis and application of functional RAFT agents[D]. Nanjing University of Science & Technology, 2008. [14] 宫希杰,谷崇,叶妮雅,等. RAFT聚合制备嵌段共聚物的研究进展[J]. 当代化工,2014,43(10):2078-2083. doi: 10.3969/j.issn.1671-0460.2014.10.043GONG Xijie, GU Cong, YE Niya, et al. Research progress in preparation of block copolymers via RAFT[J]. Contemporary Chemical Industry, 2014, 43(10):2078-2083. doi: 10.3969/j.issn.1671-0460.2014.10.043 [15] 陈超. 基于RAFT聚合制备多肽基嵌段与星型聚合物的研究[D]. 北京化工大学, 2018.CHEN Chao. RAFT synthesis of peptide based block and star polymers[D]. Beijing University of Chemical Technology, 2018. -