留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

累积工况下常规加砂水泥石的耐温性

徐新丽

徐新丽. 累积工况下常规加砂水泥石的耐温性[J]. 钻井液与完井液,2021,38(6):754-759 doi: 10.12358/j.issn.1001-5620.2021.06.015
引用本文: 徐新丽. 累积工况下常规加砂水泥石的耐温性[J]. 钻井液与完井液,2021,38(6):754-759 doi: 10.12358/j.issn.1001-5620.2021.06.015
XU Xinli.High temperature resistance of conventional set sand cement under cumulative working conditions[J]. Drilling Fluid & Completion Fluid,2021, 38(6):754-759 doi: 10.12358/j.issn.1001-5620.2021.06.015
Citation: XU Xinli.High temperature resistance of conventional set sand cement under cumulative working conditions[J]. Drilling Fluid & Completion Fluid,2021, 38(6):754-759 doi: 10.12358/j.issn.1001-5620.2021.06.015

累积工况下常规加砂水泥石的耐温性

doi: 10.12358/j.issn.1001-5620.2021.06.015
基金项目: 国家自然科学基金青年基金项目“致密油储层岩石注水吞吐实验与多尺度动态网络模拟研究”(41902157);西南石油大学科研“启航计划”“致密油藏岩石逆向渗吸实验与多尺度动态网络模拟研究”(2018QHZ002);中国博士后科学基金面上项目“致密油储层岩石渗吸实验与动态网络模拟研究”(2018M633632XB)
详细信息
    作者简介:

    徐新丽,1971年生,1992年毕业于中国地质大学石油地质系, 目前从事油气田开发与规划等工作。电话 13793990578;E-mail: 2952746189@qq.com

  • 中图分类号: TE256

High Temperature Resistance of Conventional Set Sand Cement under Cumulative Working Conditions

  • 摘要: 为了准确探究常规加砂水泥石的耐温能力,根据其在井下先经历蒸汽吞吐、蒸汽驱,再经历过渡期及稠油火烧的实际工况,利用核磁共振、XRD和SEM等技术,探明了累积工况下常规加砂水泥石孔隙度、渗透率、水化产物化学结构及微观结构的变化情况。实验结果表明,水泥石经常温养护14 d后,抗压强度达31.8 MPa,是养护28 d的90.86%,且孔渗性相对较低;经稠油火烧后,水泥石抗压强度衰退率达67.92%,孔隙度及渗透率也分别增长53.85%和77.31%,已不能满足稠油井的生产要求。这是由于高温环境下水泥石中部分“网状”或“链状”结构的水化硅酸钙转化为“颗粒状”的粒硅钙石,从而导致孔径及孔隙率变大、抗压强度降低;同时,Ca(OH)2脱羟基生成CaO并产生大量粗大孔隙及裂纹,有利于维持水泥石力学性能的物相已基本失效。

     

  • 图  1  稠油热采井实验工况

    图  2  常温下加砂水泥石抗压强度发展曲线

    图  3  累积工况下水泥石强度变化曲线

    图  4  稠油火烧前(左)后(右)水泥石实物图

    图  5  累积工况下水泥石一、二界面胶结强度变化曲线

    图  6  稠油火烧前后一、二界面胶结实物图

    图  7  累积工况下常规加砂水泥石的C—S—H孔隙结构

    图  8  累积工况下加砂水泥石的物相组成

    图  9  累积工况下加砂水泥石微观形貌变化

    表  1  累积工况下加砂水泥石的渗透率和孔隙度

    累积工况Ka/mDφ/%
    常温(25 ℃)0.11321.13
    吞吐7轮次(315 ℃)0.32831.52
    蒸汽驱(315 ℃)0.38739.56
    过渡时期(400 ℃)0.41241.88
    火烧油层(500 ℃)0.49845.79
    下载: 导出CSV
  • [1] 王苏雯. 稠油火驱开采技术研究[J]. 石化技术,2018,25(3):87-94. doi: 10.3969/j.issn.1006-0235.2018.03.066

    WANG Suxia. Research on fire flooding technology of heavy oil[J]. Petrochemical Technology, 2018, 25(3):87-94. doi: 10.3969/j.issn.1006-0235.2018.03.066
    [2] CHENG X, DONG Q, MA Y, et al. Mechanical and thermal properties of aluminate cement paste with blast furnace slag at high temperatures[J]. Construction and Building Materials, 2019, 228:84-95.
    [3] 江航,许强辉,马德胜,等. 注空气开采过程中稠油结焦量影响因素[J]. 石油学报,2016,37(8):1030-1036.

    JIANG Hang, XU qianghui, MA Desheng, et al. Influencing factors of heavy oil coking amount in air injection production[J]. Journal of Petroleum, 2016, 37(8):1030-1036.
    [4] GUO S, BU Y, LIU H, et al. The abnormal phenomenon of class G oil well cement endangering the cementing security in the presence of retarder[J]. Construction and Building Materials, 2014, 54:118-122. doi: 10.1016/j.conbuildmat.2013.12.057
    [5] KRAKOWIAK K J, THOMAS J J, MUSSO S, et al. Nano-chemo-mechanical signature of conventional oil-well cement systems: Effects of elevated temperature and curing time[J]. Cement and Concrete Research, 2015, 67:103-121. doi: 10.1016/j.cemconres.2014.08.008
    [6] 张景富. G级油井水泥的水化硬化及性能[D]. 浙江大学, 2001.

    ZHANG Jingfu. Hydration hardening and properties of grade G oil well cement[D]. Zhejiang University, 2001.
    [7] ALONSO C, FERNANDEZ L. Dehydration and rehydration processes of cement paste exposed to high temperature environments[J]. Journal of Materials Science, 2004, 39(9):3015-3024. doi: 10.1023/B:JMSC.0000025827.65956.18
    [8] LIU K, CHENG X, ZHANG C, et al. Evolution of pore structure of oil well cement slurry in suspension-solid transition stage[J]. Construction and Building Materials, 2019, 214:382-398.
    [9] LIU K, CHENG X, LI J, et al. Effects of microstructure and pore water on electrical conductivity of cement slurry during early hydration[J]. Composites:Part B, Engineering, 2019, 177:1-15.
    [10] 杨智光,崔海清,肖志兴,等. 深井高温条件下油井水泥强度变化规律研究[J]. 石油学报,2008,29(3):435-437. doi: 10.3321/j.issn:0253-2697.2008.03.024

    YANG Zhiguang, CUI Haiqing, XIAO Zhixing, et al. Study on strength variation of oil well cement under high temperature in deep well[J]. Journal of Petroleum, 2008, 29(3):435-437. doi: 10.3321/j.issn:0253-2697.2008.03.024
    [11] GARNIER A, SAINT-MARC J. An innovative methodology for designing cement-sheath integrity exposed to steam stimulation[C]. SPE 117709, 2010.
    [12] PERNITES R B, SANTRA A K. Portland cement solutions for ultra-high temperature wellbore applications[J]. Cement and Concrete Composites, 2016, 72:89-103. doi: 10.1016/j.cemconcomp.2016.05.018
    [13] LEONARDO B, COSTA D S, Cezar J, et al. Silica content in fluence on cement compressive strength in wells subjected to steam injection[J]. Journal of Petroleum Science and Engineering, 2017, 158:626-633. doi: 10.1016/j.petrol.2017.09.006
    [14] 程小伟,张明亮,李早元,等. 火烧油层工况下加砂油井水泥石失效演化研究[J]. 硅酸盐通报,2016,35(8):2335-2340.

    CHENG Xiaowei, ZHANG Mingliang, LI Zaoyuan, et al. Study on failure evolution of cement paste in sand adding oil well under in situ combustion condition[J]. Silicate Bulletin, 2016, 35(8):2335-2340.
    [15] 中国国家标准化管理委员会, GB/T 19139-2012油井水泥试验方法[S]. 北京: 中国标准出版社, 2012.

    National Standardization Administration of China, test methods for oil well cement[S]. Beijing: China Standard Press , 2012.
    [16] IRICO S, GASTALDI D, CANONICO F, et al. Investigation of the microstructural evolution of calcium sulfoaluminate cements by thermoporometry[J]. Cement and Concrete Research, 2013, 53:239-247. doi: 10.1016/j.cemconres.2013.06.012
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  398
  • HTML全文浏览量:  194
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-18
  • 刊出日期:  2021-11-30

目录

    /

    返回文章
    返回