Formulation of High Temperature Stiff Micro Foam Drilling Fluid with Strengthened Plugging Capacity
-
摘要: 在分析微泡沫高温失稳因素基础上,构建了一种抗高温强封堵微泡沫钻井液。该钻井液采用低分子量高温稳泡剂以形成高温微泡沫的刚性结构膜,采用润湿剂来提高微泡沫表面膜润湿渗透性,减缓微泡沫高温下的蒸发作用;同时优选配套抗温降滤失剂和低密度封堵剂强化微泡沫抗温承压封堵能力。形成的抗高温强封堵硬胶微泡沫钻井液的密度在0.6~1.0 g/cm3之间可调,流变性良好;稳泡效果优异,常温半衰期至少45 h,150 ℃、16 h高温半衰期至少35 h,优化配方高温后半衰期不低于120 h;形成的封堵带性能稳定,高温高压砂床实验中滤液侵入深度相对降低82.1%,钻井液侵入深度相对降低73.8%;微泡沫钻井液抗原油污染浓度不小于15%。该微泡沫钻井液不需要现场辅助特殊设备,适宜应用于高温深井低压易漏地层防漏穿漏,可在地面和井筒之间长效循环,节约材料消耗成本和设备成本,维护井壁稳定。Abstract: A high temperature stiff foam drilling fluid was formulated on the basis of analyzing the factors affecting the stability of micro foam at elevated temperatures. This drilling fluid has strengthened plugging capacity. A high temperature low molecular weight foam stabilizer was used to form a rigid structural film at the interface of the foams. A wetting agent was used to improve the wettability and osmosis of the foam surfaces, thereby mitigating the evaporation of the micro foams at elevated temperatures. Meanwhile an optimized high temperature filter loss reducer and a low density plugging agent were used to strengthen the pressure bearing and plugging capacities of the micro foam drilling fluid. The density of the stiff micro foam drilling fluid can be adjusted between 0.6 g/cm3 and 1.0 g/cm3. The micro foam drilling fluid has a stable rheology. The half-life of the foam is at least 45 h at room temperatures, at least 35 h at 150 ℃, and at least 120 h at elevated temperatures after optimization of the formulation of the foam, all indicating that the micro foam has excellent stability. The plugging belt formed by this stiff foam is stable; in HTHP sand bed test, the invasion depth of the filtrate was reduced by 82.1%, and the invasion depth of drilling fluid was reduced by 73.8%. The micro foam is able to resist contamination by at least 15% crude oil. No special equipment is required in field application of the micro foam, and it is suitable for use in controlling mud losses in high temperature deep wells penetrating low pressure formations in which mud losses are prevailing. It can be long circulated between the surface and the borehole, and help stabilize the borehole walls. Using this stiff micro foam, drilling fluid costs both on materials and equipment are saved, and borehole walls stabilized.
-
表 1 不同稳泡剂对微泡沫流体抗温性能的影响
稳定剂 T/
℃初析/
ht1/2/
hρ/
g·cm−3AV /
mPa·sYP/PV
Pa/mPa·sTFS 室温 46.00 56.00 0.74 28.0 1.55 150 18.00 37.00 0.66 32.0 1.13 XC 室温 20.00 22.00 0.83 30.0 0.88 150 0 0.10 0.32 24.0 0.50 HV-CMC 室温 0.05 1.17 0.56 44.0 0.52 150 0 1.33 0.37 32.5 0.48 注:稳定剂加量均为3% 表 2 不同降滤失剂对微泡沫钻井液降滤失性能的影响
指标 基液 DSP-Ⅱ LV-PAC SK-Ⅱ SMP-1 SJ-1 FL/mL 18.6 13.4 12.8 11.6 10.6 12.8 t1/2 15 min 3.9 h 1.5 h 25 min 11 min 3 min 注:微泡沫配方:2%膨润土+0.1%TFS+0.2%SDS+
0.1%AOS+0.5%降滤失剂表 3 不同封堵剂对微泡沫钻井液封堵和稳定性的影响
封堵剂 侵入深度/cm t1/2/h 常温 150 ℃ 常温 150 ℃ 基液 13.9 全失 7.2 3.9 改性纤维粉 7.6 11.8 20.0 11.0 超细碳酸钙 8.8 12.0 5.8 2.9 纳米二氧化硅 7.6 10.2 7.5 4.2 白沥青 13.5 9.6 6.6 3.5 乳液封堵剂 11.2 9.2 7.8 4.1 聚合醇 25 mL 180 mL 7.0 4.0 注:配方:2%膨润土浆+0.1%TFS+0.5%DSP-Ⅱ+0.2%
SDS+0.1%AOS+2%封堵剂表 4 微泡沫钻井液用润湿剂的优选
润湿剂 T/℃ 初析/h t1/2/h 基液 室温 13.0 20.0 150 9.0 11.0 聚甘油单油酸酯 室温 16.0 28.0 150 6.0 7.0 司盘-80 室温 20.0 33.0 150 16.0 21.0 吐温-80 室温 15.0 32.0 150 7.5 8.5 OP-10 室温 14.0 34.0 150 12.0 14.0 注:配方:0.2%润湿剂+2%膨润土浆+0.1%TFS+0.5%
DSP-Ⅱ+0.2%SDS+0.1%AOS+2%改性纤维粉表 5 微泡沫钻井液抗温稳定性
配方 T/
℃初析/
ht1/2/
hρ/
g·cm−3FL/
mLPV/
mPa·sYP/
PaYP/PV/
Pa/mPa·s1# 室温 34 45 0.65 5.6 27.0 19.0 0.70 150 28 35 0.63 5.6 30.0 18.0 0.60 2# 室温 73 97 0.74 4.2 36.5 22.5 0.62 150 72 89 0.73 4.2 37.5 22.5 0.60 3# 室温 >120 >120 0.91 3.8 41.0 27.0 0.66 150 >120 >120 0.89 3.8 43.5 26.5 0.61 注:老化条件为150 ℃、16 h 表 6 微泡沫钻井液抗原油污染能力的评价
原油/
%2# 3# FLAPI/
mLV泡沫/
mLt1/2/
dFLAPI/
mLV 泡沫/
mLt1/2/
d0 4.4 870 >30 3.8 810 >30 5 4.4 865 >30 3.8 810 >30 10 4.2 895 21 3.6 840 22 15 4.2 825 6 3.4 780 9 20 4.2 685 2 3.4 720 2 -
[1] 崔文青. 可循环泡沫钻井液性能及应用现状[J]. 西部探矿工程,2020(11):46-48.CUI Wenqing. Performance and application status of circulating foam drilling fluid[J]. Western Prospecting Project, 2020(11):46-48. [2] 宋菲. 无黏土相可循环微泡沫钻井液的室内研究[J]. 石油化工应用,2015,34(7):97-103. doi: 10.3969/j.issn.1673-5285.2015.07.023SONG Fei. Research on circulative micro-foam drilling fluid system with clay-free[J]. Petrochemical Industry Application, 2015, 34(7):97-103. doi: 10.3969/j.issn.1673-5285.2015.07.023 [3] 刘振东,唐代绪,刘从军,等. 无固相微泡沫钻井液的研究及应用[J]. 钻井液与完井液,2012,29(3):33-35. doi: 10.3969/j.issn.1001-5620.2012.03.010LIU Zhendong, TANG Daixu, LIU Congjun, et al. Research and application of solid-free micro-foam drilling fluid[J]. Drilling Fluid & Completion Fluid, 2012, 29(3):33-35. doi: 10.3969/j.issn.1001-5620.2012.03.010 [4] 张荣,莫成孝. 抗高温海水微泡沫钻井液实验研究[J]. 钻井液与完井液,2008,25(6):32-35. doi: 10.3969/j.issn.1001-5620.2008.06.012ZHANG Rong, MO Chengxiao. Study on experiments of high-temperature seawater micro-foam drilling fluid[J]. Drilling Fluid & Completion Fluid, 2008, 25(6):32-35. doi: 10.3969/j.issn.1001-5620.2008.06.012 [5] 杨虎,鄢捷年,陈涛. 新型水基微泡沫钻井液的室内配方优选和性能评价[J]. 石油钻探技术,2006,34(2):41-44. doi: 10.3969/j.issn.1001-0890.2006.02.012YANG Hu, YAN Jienian, CHEN Tao. Lab study and evaluation of a new water-based aphrons drilling fluid[J]. Petroleum Drilling Techniques, 2006, 34(2):41-44. doi: 10.3969/j.issn.1001-0890.2006.02.012 [6] 王洪军,焦震,郑秀华,等. 大庆油田微泡沫钻井液的研究与应用[J]. 石油钻采工艺,2007,29(5):88-92. doi: 10.3969/j.issn.1000-7393.2007.05.025WANG Hongjun, JIAO Zhen, ZHENG Xiuhua, et al. Researchand application of micro-foam drilling fluid in Daqing Oilfield[J]. Oil Drilling & Production Technology, 2007, 29(5):88-92. doi: 10.3969/j.issn.1000-7393.2007.05.025 [7] 汪桂娟,丁玉兴,陈乐亮,等. 具有特殊结构的微泡沫钻井液技术综述[J]. 钻井液与完井液,2004,21(3):44-52. doi: 10.3969/j.issn.1001-5620.2004.03.014WANG Guijuan, DING Yuxing, CHEN Leliang, et al. Aphron-base drilling fluid technology[J]. Drilling Fluid & Completion Fluid, 2004, 21(3):44-52. doi: 10.3969/j.issn.1001-5620.2004.03.014 [8] 邓泽穆. 充气泡沫泥浆在地热钻井中的试验应用[J]. 西部探矿工程,1994,6(6):69-70.DENG Zemu. Experimental application of aerated foam mud in geothermal drilling[J]. Western Prospecting Project, 1994, 6(6):69-70. [9] GROWCOCK F B, BELKIN A, FOSDICK M, et al. Recent advances in aphorn drilling fluids[C]. IADC/SPE 97982: 1-7. [10] CRAIG C WHITE, ADRIAN P, CATALIN DAND ROB. Aphron-based drilling fluid: novel technology for drilling depleted formations in the NorthSea[R]. SPE 79 840: 1-6. [11] 唐金库. 泡沫稳定性影响因素及性能评价技术综述[J]. 舰船防化,2008,4(4):1-8.TANG Jinku. Review on influence factors and measurement techniques of foam stability[J]. Chemical Defence on Ships, 2008, 4(4):1-8. [12] 刘德生,陈小榆. 温度对泡沫稳定性的影响研究[J]. 中国海洋平台,2006,21(4):19-22. doi: 10.3969/j.issn.1001-4500.2006.04.004LIU Desheng, CHEN Xiaoyu. Study on the influence of temperature on foam stability[J]. China Ocean Platform, 2006, 21(4):19-22. doi: 10.3969/j.issn.1001-4500.2006.04.004 [13] 赵建兵,王世兵,王蒙蒙,等. 泡沫流体稳定性受温度影响分析[J]. 广州化工,2015,43(7):98-117. doi: 10.3969/j.issn.1001-9677.2015.07.038ZHAO Jianbing, WANG Shibing, WANG Mengmeng, et al. Analysis of foaming fluid's stability influenced by temperature[J]. Guangzhou Chemical Industry, 2015, 43(7):98-117. doi: 10.3969/j.issn.1001-9677.2015.07.038 [14] 李公让. 泡沫钻井流体温度敏感性研究[J]. 石油钻探技术,2011,39(4):34-39. doi: 10.3969/j.issn.1001-0890.2011.04.007LI Gongrang. Study of foam drilling fluid temperature sensitivity[J]. Petroleum Drilling Techniques, 2011, 39(4):34-39. doi: 10.3969/j.issn.1001-0890.2011.04.007 [15] 赖晓晴,楼一珊,屈沅治,等. 超高温地热井泡沫钻井流体技术[J]. 钻井液与完井液,2009,26(2):37-38. doi: 10.3969/j.issn.1001-5620.2009.02.011LAI Xiaoqing, LOU Yishan, QU Yuanzhi, et al. Foam drilling fluid technology for ultra-high temperature geothermal wells[J]. Drilling Fluid & Completion Fluid, 2009, 26(2):37-38. doi: 10.3969/j.issn.1001-5620.2009.02.011 [16] 董海燕,单文军,李艳宁,等. 耐高温泡沫钻井液技术研究概况及研究方向探讨[J]. 地质与勘探,2014,50(5):991-996.DONG Haiyan, SHAN Wenjun, LI Yanning, et al. Research progress and direction of the anti-high temperature foam drilling fluid technology[J]. Geology and Exploration, 2014, 50(5):991-996. [17] 胡钶,王其伟,郭平,等. 耐高温泡沫剂的综合评价与新产品开发[J]. 青岛科技大学学报:自然科学版,2010,31(3):274-278.HU Ke, WANG Qiwei, GUO Ping, et al. Comprehensive evaluation of high temperature foaming agent and new product developing[J]. Journal of Qingdao University of Science and Technology (Natural Science Edition) , 2010, 31(3):274-278. [18] 王庆,刘永革,吕朝辉,等. 高温发泡剂性能评价新方法[J]. 特种油气藏,2015,22(3):93-96. doi: 10.3969/j.issn.1006-6535.2015.03.023WANG Qing, LIU Yongge, LYU Zhaohui, et al. A new performance evaluation of high-temperature foaming agent[J]. Special Oil and Gas Reservoir, 2015, 22(3):93-96. doi: 10.3969/j.issn.1006-6535.2015.03.023 [19] 闫方平. 泡沫封堵体系发泡剂的筛选与评价[J]. 辽宁化工,2018,47(2):97-102. doi: 10.3969/j.issn.1004-0935.2018.02.005YAN Fangping. Evaluation and selection of foaming agents in foam sealing system[J]. Liaoning Chemical Industry, 2018, 47(2):97-102. doi: 10.3969/j.issn.1004-0935.2018.02.005 [20] 张立明,孙德四,朱友益. 新型高温发泡剂烷基苯烷基磺酸钠性[J]. 西安石油大学学报:自然科学版,2008,23(3):57-60.ZHANG Liming, SUN Desi, ZHU Youyi. Study on the property of a new high-temperature foamer dialkybenze sulfonate[J]. Journal of Xi’an Shiyou University(Natural Science Edition) , 2008, 23(3):57-60. -