留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超分子聚合物堵漏技术在长庆油田恶性漏失井的应用

艾磊 宫臣兴 谢江锋 蒋官澄 崔凯潇 邓正强

艾磊,宫臣兴,谢江锋,等. 超分子聚合物堵漏技术在长庆油田恶性漏失井的应用[J]. 钻井液与完井液,2021,38(6):705-714 doi: 10.12358/j.issn.1001-5620.2021.06.007
引用本文: 艾磊,宫臣兴,谢江锋,等. 超分子聚合物堵漏技术在长庆油田恶性漏失井的应用[J]. 钻井液与完井液,2021,38(6):705-714 doi: 10.12358/j.issn.1001-5620.2021.06.007
AI Lei, GONG Chenxing, XIE Jiangfeng, et al.Application of supramolecular polymer plugging technology in changqing oilfield[J]. Drilling Fluid & Completion Fluid,2021, 38(6):705-714 doi: 10.12358/j.issn.1001-5620.2021.06.007
Citation: AI Lei, GONG Chenxing, XIE Jiangfeng, et al.Application of supramolecular polymer plugging technology in changqing oilfield[J]. Drilling Fluid & Completion Fluid,2021, 38(6):705-714 doi: 10.12358/j.issn.1001-5620.2021.06.007

超分子聚合物堵漏技术在长庆油田恶性漏失井的应用

doi: 10.12358/j.issn.1001-5620.2021.06.007
基金项目: 国家科技重大专项鄂尔多斯盆地致密油开发示范工程“ 致密油水平井钻完井技术研究与应用”(2017ZX05069004)。
详细信息
    作者简介:

    艾磊,工程师,1986年生,毕业于西南石油大学石油工程专业,现在从事钻井工艺研究工作。E-mail:al1_cq@petrochina.com.cn;电话17791259280

  • 中图分类号: TE282

Application of Supramolecular Polymer Plugging Technology in Changqing Oilfield

  • 摘要: 长7页岩油储层致密但流体流动性好,砂岩储层存在微米级孔隙,加上存在断层构造,导致钻进过程中渗透性漏失、裂缝性漏失甚至失返性漏失频发,常规堵漏材料无法满足钻井施工要求,造成非生产时间和成本大幅度增加,严重制约了勘探开发进程。借助超分子化学理论,通过合成优化配方,研发出了新型超分子聚合物防漏堵漏材料,并对其微观结构、剪切稀释性和恶性漏失承压堵漏能力进行了表征与测试。研究结果表明,超分子聚合物堵漏材料不仅具有优异的剪切稀释性和黏附能力,而且对两层钢珠床(钢珠直径8~10 mm)模拟的大孔隙性漏失和直缝板(缝宽2~6 mm)模拟的裂缝性漏失均具有较强的承压堵漏效果,承压达6 MPa。在长7页岩油区块典型恶性漏失井应用表明,超分子聚合物堵漏技术可以有效提高裂缝性漏层的承压能力,减少漏失量并降低综合堵漏成本,助力长7页岩油勘探开发,值得进一步研究和推广。

     

  • 图  1  71型高温高压堵漏仪物理模型

    图  2  超分子聚合物红外表征图谱

    图  3  超分子聚合物堵漏剂扫描电镜图像

    图  4  25%超分子聚合物堵漏剂溶液黏度随剪切速率变化曲线

    图  5  超分子聚合物堵漏剂的黏附能力测试结果

    图  6  不同浓度超分子聚合物堵漏剂形成的砂床状态

    图  7  超分子聚合物堵漏剂对不同尺寸两层钢珠床的承压能力评价

    注:1 psi=6.9 kPa

    图  8  超分子聚合物堵漏剂黏结后的9 mm两层钢珠床

    图  9  超分子聚合物堵漏剂对不同尺寸缝板的承压能力评价

    注:1 psi=6.9 kPa

    图  10  超分子聚合物堵漏剂封堵后3 mm缝板

    图  11  华H50-7井地震反演剖面

    图  12  华X井钻井期间平均漏速变化情况

    图  13  超分子聚合物挤封压力曲线

    表  1  超分子聚合物合成方案设计

    序号AM∶WS-1t/h引发剂/%SDS/%T/℃
    199∶120.2140
    299∶530.3250
    390∶1040.4360
    488∶1250.5470
    599∶530.3250
    699∶540.2140
    799∶550.5470
    899∶520.4360
    990∶1040.5360
    1090∶1020.2470
    1190∶1050.4140
    1290∶1030.3250
    1388∶1250.4470
    1488∶1240.5340
    1588∶1220.3250
    1688∶1230.2160
    下载: 导出CSV

    表  2  不同配方条件下0.2%~0.5%超分子聚合物溶液剪切稀释测试结果

    序号超分子聚合物/
    %
    高剪切速率
    下的黏度/
    mPa·s
    低剪切速率
    下的黏度/
    mPa·s
    10.5788120
    20.55512510
    30.54678080
    40.58942015
    50.3687954
    60.24515420
    70.550100871
    80.58745792
    90.56810541
    100.56251234
    110.549112540
    120.59541258
    130.5889974
    140.55177589
    150.54278564
    160.59122543
    下载: 导出CSV

    表  3  不同浓度超分子聚合物堵漏剂漏失量随压力的变化

    P/
    MPa
    不同超分子聚合物浓度(%)下的漏失量/mL
    101520
    0000
    163480
    2全漏失全漏失0
    30
    41
    524
    6全漏失
    下载: 导出CSV
  • [1] 徐同台, 刘玉杰, 申威. 钻井工程防漏堵漏技术[M]. 北京: 石油工业出版社, 1997.

    XU Tongtai, LIU Yujie, SHEN Wei. Loss prevention and plugging technology for drilling engineering[M]. Beijing: Petroleum Industry Press, 1997.
    [2] 杨勇,罗鸣,韩成,等. 国内外大裂缝、溶洞性复杂地层堵漏技术进展[J]. 化学工程与装备,2018(8):282-284.

    YANG Yong, LUO Ming, HAN Cheng, et al. Progress in plugging technology for large fractures and complex cavernous formations at home and abroad[J]. Chemical Engineering & Equipment, 2018(8):282-284.
    [3] 温峥,杨双春,潘一,等. 堵漏技术的研究进展[J]. 油田化学,2016,33(1):186-190.

    WEN Zheng, YANG Shuangchun, Pan Yi, et al. Research progress of plugging technology[J]. Oilfield Chemistry, 2016, 33(1):186-190.
    [4] 王中华. 复杂漏失地层堵漏技术现状及发展方向[J]. 中外能源,2014(1):39-48. doi: 10.3969/j.issn.1673-579X.2014.01.007

    WANG Zhonghua. The status and development direction of plugging technology for complex formation lost circulation[J]. Sino-global Energy, 2014(1):39-48. doi: 10.3969/j.issn.1673-579X.2014.01.007
    [5] 康玉柱. 中国非常规油气勘探重大进展和资源潜力[J]. 石油科技论坛,2018,37(4):1-7. doi: 10.3969/j.issn.1002-302x.2018.04.001

    KANG Yuzhu. Significant Exploration Progress and Resource Potential of Unconventional Oil and Gas in China[J]. Petroleum Science and Technology Forum, 2018, 37(4):1-7. doi: 10.3969/j.issn.1002-302x.2018.04.001
    [6] WHITE R J. Lost-circulation materials and their evaluation[C]. //Drilling and Production Practice, American Petroleum Institute, 1956.
    [7] ALSABA M, NYGAARD R, HARELAND G, et al. Review of lost circulation materials and treatments with an updated classification[C]. //AADE Fluids Technical Conference and Exhibition, American Association of Drilling Engineers, 2014 : 1-9.
    [8] ABRAMS A. Mud design to minimize rock impairment due to particle invasion[J]. Journal of petroleum technology, 1977, 29(5):586-592. doi: 10.2118/5713-PA
    [9] DICK M A, HEINZ T J, SVOBODA C F, et al. Optimizing the Selection of Bridging Particles for Reservoir Drilling Fluids[C]. //SPE International Symposium on Formation Damage Control, Society of Petroleum Engineers, 2000: 8.
    [10] VICKERS S, COWIE M, JONES T, et al. A new methodology that surpasses current bridging theories to efficiently seal a varied pore throat distribution as found in natural reservoir formations[J]. Wiertnictwo, Nafta, Gaz, 2006, 23(1):501-515.
    [11] ARSHAD U, JAIN B, RAMZAN M, et al. Engineered Solution to Reduce the Impact of Lost Circulation During Drilling and Cementing in Rumaila Field, Iraq[C].//International Petroleum Technology Conference, International Petroleum Technology Conference, 2015: 17.
    [12] 张新民,聂勋勇,王平全,等. 特种凝胶在钻井堵漏中的应用[J]. 钻井液与完井液,2007(5):83-84+94. doi: 10.3969/j.issn.1001-5620.2007.05.028

    ZHANG Xinmin, NIE Xunyong, WANG Pingquan, et al. A special gel for mud loss control[J]. Drilling Fluid & Completion, 2007(5):83-84+94. doi: 10.3969/j.issn.1001-5620.2007.05.028
    [13] 王平全,聂勋勇,张新民,等. 特种凝胶在处理“井漏井喷”中的应用[J]. 天然气工业,2008(6):81-82+85+150-151. doi: 10.3787/j.issn.1000-0976.2008.06.021

    WANG Pingquan, NIE Xunyong, ZHANG Xinmin, et al. Application of a special gel to controlling blowout and lost circulation[J]. Natural Gas Industry, 2008(6):81-82+85+150-151. doi: 10.3787/j.issn.1000-0976.2008.06.021
    [14] 王平全,李再钧,聂勋勇,等. 用于钻井堵漏和封堵的特种凝胶抗冲稀性能[J]. 石油学报,2012,33(4):697-701.

    WANG Pingquan, LI Zaijun, NIU xunyong, et al. Anti-dilution properties of a special gel applied to loss circulation control in drilling[J]. Acta Petrolei Sinica, 2012, 33(4):697-701.
    [15] 周厚培. 聚合物凝胶堵漏工艺[J]. 油田化学,1987(3):161-169.

    ZHOU Houpei. Technology of polymer gelling plugging in case of circulation losses[J]. Oilfield Chemistry, 1987(3):161-169.
    [16] 张希文,李爽,张洁,等. 钻井液堵漏材料及防漏堵漏技术研究进展[J]. 钻井液与完井液,2009,26(6):74-76. doi: 10.3969/j.issn.1001-5620.2009.06.022

    ZHANG Xiwen, LI Shuang, ZHANG Jie, et al. Research progress on lost circulation materials and lost circulation control technology[J]. Drilling Fluid & Completion, 2009, 26(6):74-76. doi: 10.3969/j.issn.1001-5620.2009.06.022
    [17] 沈家骢,孙俊奇. 超分子科学研究进展[J]. 中国科学院院刊,2004(6):420-424. doi: 10.3969/j.issn.1000-3045.2004.06.006

    SHEN Jiacong, SUN Junqi. Research development of supramolar science[J]. Bulletin of Chinese Academy of Sciences, 2004(6):420-424. doi: 10.3969/j.issn.1000-3045.2004.06.006
    [18] 李旋,蒋瑶,谢千秋,等. 超分子水凝胶材料研究进展[J]. 应用化工,2019,48(5):1140-1145. doi: 10.3969/j.issn.1671-3206.2019.05.036

    LI Xuan, Jiang Yao, XIE Qianqiu, et al. Progress in supramolecular hydrogel materials[J]. Applied Chemical Industry, 2019, 48(5):1140-1145. doi: 10.3969/j.issn.1671-3206.2019.05.036
    [19] 张政. 超分子自愈合水凝胶的制备及性能研究[D]. 宁波: 宁波大学, 2018.

    ZHANG Zheng. Preparation and performance study of supramolecular self-healing hydrogel[D]. Ningbo: Ningbo University, 2018.
    [20] 王勇,蒋官澄,杜庆福,等. 超分子化学堵漏技术研究与应用[J]. 钻井液与完井液,2018,35(3):48-53. doi: 10.3969/j.issn.1001-5620.2018.03.008

    WANG Yong, JIANG Guancheng, DU Qingfu, et al. Study and application of supramolecule chemical LCM technology[J]. Drilling Fluid & Completion Fluid, 2018, 35(3):48-53. doi: 10.3969/j.issn.1001-5620.2018.03.008
    [21] 方俊伟,吕忠楷,何仲,等. 化学凝胶堵剂承压堵漏技术在顺北3井的应用[J]. 钻井液与完井液,2017,34(6):13-17. doi: 10.3969/j.issn.1001-5620.2017.06.003

    FANG Junwei, LYU Zhongkai, HE Zhong, et al. Application of chemical gel LCM on well Shunbei-3[J]. Drilling Fluid & Completion Fuild, 2017, 34(6):13-17. doi: 10.3969/j.issn.1001-5620.2017.06.003
    [22] 王骁男,张栋俊,吕忠楷,等. 智能凝胶塞在晋中3井的应用[J]. 钻采工艺,2018,41(5):110-112. doi: 10.3969/J.ISSN.1006-768X.2018.05.33

    WANG Xiaonan, ZHANG Dongjun, LYU Zhongkai, et al. Application of smart gel plug in jinzhong 3 well[J]. Drilling & Production Technology, 2018, 41(5):110-112. doi: 10.3969/J.ISSN.1006-768X.2018.05.33
    [23] 胡祖彪,张建卿,王清臣,等. 长庆油田华H50-7井超长水平段钻井液技术[J]. 石油钻探技术,2020,48(4):28-36.

    HU Zubiao, ZHANG Jianqing, WANG Qingchen, et al. Drilling fluid technology for ultra-long horizontal section of well Hua H50-7 in the Changqing Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(4):28-36.
    [24] 王平全,朱涛. 一种评价特种凝胶ZND启动压力的新仪器[J]. 钻井液与完井液,2015,32(1):57-59.

    WANG Pingquan, ZHU Tao. A novel instrument for evaluation start-up pressure of special gel ZND[J]. Drilling Fluid & Completion Fuild, 2015, 32(1):57-59.
    [25] 李文博,李公让. 可控化聚合物凝胶堵漏材料的研究进展[J]. 钻井液与完井液,2021,38(2):133-141.

    LI Wenbo,LI Gongrang. Research progress of controllable polymer gel lost circulation materials[J]. Drilling Fluid & Completion Fuild, 2021, 38(2):133-141.
    [26] 许婧,王在明,张艺馨,等. 自固结堵漏技术在冀东油田G21X3井的应用[J]. 钻井液与完井液,2021,38(1):89-92.

    XU Jing, WANG Zaiming, ZHANG Yixin, et al. Application of a Self-Solidifying Lost Circulation Material in Well G21X3 in Jidong Oilfield[J]. Drilling Fluid & Completion Fluid, 2021, 38(1):89-92.
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  655
  • HTML全文浏览量:  363
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-08
  • 刊出日期:  2021-11-30

目录

    /

    返回文章
    返回