留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海上高温高压井环空ECD精细预测模型

张更 李军 柳贡慧 王江帅 张锐尧 陈旺

张更,李军,柳贡慧,等. 海上高温高压井环空ECD精细预测模型[J]. 钻井液与完井液,2021,38(6):698-704 doi: 10.12358/j.issn.1001-5620.2021.06.006
引用本文: 张更,李军,柳贡慧,等. 海上高温高压井环空ECD精细预测模型[J]. 钻井液与完井液,2021,38(6):698-704 doi: 10.12358/j.issn.1001-5620.2021.06.006
ZHANG Geng, LI Jun, LIU Gonghui, et al.A precise model for prediction of annular ECD in offshore HTHP wells[J]. Drilling Fluid & Completion Fluid,2021, 38(6):698-704 doi: 10.12358/j.issn.1001-5620.2021.06.006
Citation: ZHANG Geng, LI Jun, LIU Gonghui, et al.A precise model for prediction of annular ECD in offshore HTHP wells[J]. Drilling Fluid & Completion Fluid,2021, 38(6):698-704 doi: 10.12358/j.issn.1001-5620.2021.06.006

海上高温高压井环空ECD精细预测模型

doi: 10.12358/j.issn.1001-5620.2021.06.006
基金项目: 国家自然科学基金重点项目“深水油气钻采井筒压力控制基础研究”(51734010)。
详细信息
    作者简介:

    张更,在读博士研究生,1996年生,2018年毕业于长江大学海洋油气工程专业,主要从事控压钻井、水合物开采方面的技术研究。电话 13407219690;E-mail:zhanggeng_96@163.com

  • 中图分类号: TE254.1

A Precise Model for Prediction of Annular ECD in Offshore HTHP Wells

  • 摘要: 为了准确预测高温高压井环空ECD,基于高温高压下钻井液流变性测试数据,利用多元非线性回归得到了钻井液密度和流变参数计算模型。通过将钻井液密度和流变参数计算模型与井筒传热模型耦合,建立高温高压井环空ECD精细预测模型。相比Drillbench软件计算结果,该模型更接近于实测PWD数据,误差更小。实例井计算结果表明,循环钻进过程中,下部环空温度不断降低,钻井液密度和稠度系数受温度影响不断增加,导致环空ECD不断增加;钻井液排量与地温梯度是影响环空ECD分布的关键因素,排量越大,环空压耗越大,进而环空ECD也越大;地温梯度直接影响环空温度分布,地温梯度的增加将导致环空ECD的不断降低。

     

  • 图  1  南海乐东区块某高温高压井井身结构

    图  2  模型计算值与PWD测量值和软件计算值对比

    图  3  不同循环钻进时间条件下环空温度和钻井液密度剖面

    图  4  不同循环钻进时间条件下 环空压耗和ECD剖面

    图  5  不同钻井液排量下环空压耗和ECD剖面

    图  6  不同地温梯度下钻井液密度和ECD剖面

    表  1  钻井液密度计算模型回归系数

    钻井液ξp/10−5ξT/10−7ξpp/10−5ξTT/10−6ξpT/10−6
    水基钻井液−7.982−7.0581.218−4.7973.904
    油基钻井液−1.939−6.8373.152−2.7681.218
    下载: 导出CSV

    表  2  南海乐东区块某高温高压井四开钻进参数

    井深/
    m
    ROP/
    m/h
    转速/
    r/min
    排量/
    L/s
    ρ钻井液/
    g·cm-3
    动切力/
    Pa
    3240~34344.4110551.7510.5
    3434~385012.990481.969.5
    3850~401811.2110452.0110.5
    4018~41004.2110452.0611.0
    下载: 导出CSV
  • [1] 陈启军. 深水钻井环空ECD计算[J]. 科技信息,2009(29):66.

    CHEN Qijun. Calculation of ECD of annulus in deepwater drilling[J]. Science and Technology Information, 2009(29):66.
    [2] 郭建华, 李黔, 高自力. 高温高压井ECD计算[J]. 天然气工业, 2006, 26(8): 72-74.

    GUO Jianhua, LI Qian, GAO Zili. ECD computation for HPHT wells [J]. Natural Gas Industry, 2006, 26(8): 72-74.
    [3] 赵胜英,鄢捷年,李怀科,等. 高温深井钻井液当量循环密度预测模型[J]. 钻井液与完井液,2009,26(2):30-34. doi: 10.3969/j.issn.1001-5620.2009.02.009

    ZHAO Shengying, YAN Jienian, LI Huaike, et al. Prediction model of drilling fluid equivalent circulating density in high temperature deep well[J]. Drilling Fluid & Completion Fluid, 2009, 26(2):30-34. doi: 10.3969/j.issn.1001-5620.2009.02.009
    [4] 姚伟. 溢流条件下深水钻井当量循环密度计算[D]. 北京: 中国石油大学(北京), 2019.

    YAO Wei. Calculation of equivalent circulating density in deepwater drilling under overflow condition [D]. Beijing: China University of Petroleum (Beijing), 2019.
    [5] 杨雪山,李胜,鄢捷年,等. 水平井井筒温度场模型及ECD的计算与分析[J]. 钻井液与完井液,2014,31(5):63-66. doi: 10.3969/j.issn.1001-5620.2014.05.018

    YANG Xueshan, LI Sheng, YAN Jienian, et al. Calculation and analysis of temperature field model and ECD in horizontal well[J]. Drilling Fluid & Completion Fluid, 2014, 31(5):63-66. doi: 10.3969/j.issn.1001-5620.2014.05.018
    [6] 王鄂川,樊洪海,党杨斌,等. 环空附加当量循环密度的计算方法[J]. 断块油气田,2014,21(5):671-674.

    WANG Echuan, FAN Honghai, DANG Yangbin, et al. Calculation method of additional equivalent circulating density[J]. Fault-Block Oil and Gas Field, 2014, 21(5):671-674.
    [7] 李亚刚,冯辉,王文深,等. 基于井内实时水力学模型的环空压力计算及分析[J]. 探矿工程(岩土钻掘工程),2017,44(10):22-25.

    LI Yagang, FENG Hui, WANG Wenshen, et al. Calculation and analysis of annulus pressure based on real-time hydraulic model in well[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling), 2017, 44(10):22-25.
    [8] 马光曦. 高温高压井ECD校核与控制技术研究[D]. 中国石油大学(北京), 2016.

    MA Guangxi. Research on ECD check and control technology in HP/HT wells [D]. China University of Petroleum (Beijing), 2016.
    [9] 陈小龙. 大北-克深区块ECD预测方法研究与应用[D]. 北京: 中国石油大学(北京), 2016.

    CHEN Xiaolong. Research and application of ECD prediction method in Dabai-Keshen block [D]. Beijing: China University of Petroleum (Beijing), 2016.
    [10] 王敏生,易灿,徐加放. 高温高压对超深井钻井液密度的影响[J]. 石油钻采工艺,2007,29(5):85-87. doi: 10.3969/j.issn.1000-7393.2007.05.024

    WANG Minsheng, YI Can, XU Jiafang. Effects on high temperature and pressure density[J]. Oil Drilling & Production Technology, 2007, 29(5):85-87. doi: 10.3969/j.issn.1000-7393.2007.05.024
    [11] 罗宇维,朱江林,李东,等. 温度和压力对井内流体密度的影响[J]. 石油钻探技术,2012(2):34-38.

    LUO Yuwei, ZHU Jianglin, LI Dong, et al. The impact of temperature & pressure on borehole fluids density[J]. Petroleum Drilling Techniques, 2012(2):34-38.
    [12] 王贵,蒲晓林,罗兴树. 水基钻井液高温高压密度特性研究[J]. 石油钻采工艺,2008,30(3):38-40. doi: 10.3969/j.issn.1000-7393.2008.03.009

    WANG Gui, PU Xiaolin, LUO Xingshu. Research on density of water-base drilling fluid at HTHP[J]. Oil Drilling & Production Technology, 2008, 30(3):38-40. doi: 10.3969/j.issn.1000-7393.2008.03.009
    [13] MCMORDIE W C, BLAND R G, HAUSER J M. Effect of temperature and pressure on the density of drilling fluids[C]// SPE Annual Technical Conference and Exhibition. 1982.
    [14] ZHOU H, NIU X, FAN H, et al. Effective calculation model of drilling fluids density and ESD for HTHP well while drilling[C]// IADC/SPE Asia Pacific Drilling Technology Conference. 2016.
    [15] OSMAN E A, AGGOUR M A. Determination of drilling mud density change with pressure and temperature made simple and accurate by ANN[C]//Middle East Oil Show. OnePetro, 2003.
    [16] 王江帅,李军,柳贡慧,等. 循环钻进过程中井筒温度场新模型[J]. 断块油气田,2018,25(2):240-243.

    WANG Jiangshuai, LI Jun, LIU Gonghui, et al. New model of wellbore temperature field during drilling process[J]. Fault-Block Oil and Gas Field, 2018, 25(2):240-243.
    [17] YANG H, LI J, LIU G, et al. Numerical analysis of transient wellbore thermal behavior in dynamic deepwater multi-gradient drilling[J]. Energy, 2019, 179:138-153. doi: 10.1016/j.energy.2019.04.214
    [18] YANG H, LI J, LIU G, et al. Development of transient heat transfer model for controlled gradient drilling[J]. Applied Thermal Engineering, 2018, 148:331-339.
    [19] ZHANG Z, XIONG Y, GAO Y, et al. Wellbore temperature distribution during circulation stage when well-kick occurs in a continuous formation from the bottom-hole[J]. Energy, 2018, 164:964-977. doi: 10.1016/j.energy.2018.09.048
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  635
  • HTML全文浏览量:  279
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-31
  • 录用日期:  2021-08-11
  • 刊出日期:  2021-11-30

目录

    /

    返回文章
    返回