留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同温度钻井液浸泡岩石对其表面形貌的影响

邓嵘 刘建平 罗敏敏 张家彧 黄安龙

邓嵘,刘建平,罗敏敏,等. 不同温度钻井液浸泡岩石对其表面形貌的影响[J]. 钻井液与完井液,2021,38(6):691-697, 704 doi: 10.12358/j.issn.1001-5620.2021.06.005
引用本文: 邓嵘,刘建平,罗敏敏,等. 不同温度钻井液浸泡岩石对其表面形貌的影响[J]. 钻井液与完井液,2021,38(6):691-697, 704 doi: 10.12358/j.issn.1001-5620.2021.06.005
DENG Rong, LIU Jianping, LUO Minmin, et al.Effects of drilling fluid soaking on surface morphology of rocks at different temperatures[J]. Drilling Fluid & Completion Fluid,2021, 38(6):691-697, 704 doi: 10.12358/j.issn.1001-5620.2021.06.005
Citation: DENG Rong, LIU Jianping, LUO Minmin, et al.Effects of drilling fluid soaking on surface morphology of rocks at different temperatures[J]. Drilling Fluid & Completion Fluid,2021, 38(6):691-697, 704 doi: 10.12358/j.issn.1001-5620.2021.06.005

不同温度钻井液浸泡岩石对其表面形貌的影响

doi: 10.12358/j.issn.1001-5620.2021.06.005
基金项目: 国家自然科学基金项目“气体钻井激光-机械复合作用高效破岩机理与试验研究”(51974272)
详细信息
    作者简介:

    邓嵘,教授,1962年生,毕业于天津大学精密仪器专业,现在从事井下工具与岩石破碎以及井壁稳定性研究及教学工作。E-mail:dengrongswpi@126.com

  • 中图分类号: TE21

Effects of Drilling Fluid Soaking on Surface Morphology of Rocks at Different Temperatures

  • 摘要: 为揭示钻井液浸泡岩石产生表面形貌损伤引起井壁失稳,选取砂岩、页岩岩样,利用三维光学显微镜,对不同温度钻井液浸泡作用前后的岩石表面形貌进行测试,定量分析其特征参数,探讨温度对岩石表面形貌的影响机制及损伤度。结果表明:随温度的升高,特征参数Sa、Sq、Sk整体上呈增大趋势,特征参数Sr整体上呈减小趋势,导致其形貌轮廓的粗糙度、离散性、波动性增加,轮廓起伏度降低,对称性优于浸泡前;在30~120 ℃时,形貌损伤度逐渐增加,在120~150 ℃时,形貌损伤度降低,形貌损伤度极值点TS在120~150 ℃之间。砂岩和页岩的高度特征参数的损伤度大于纹理特征参数的损伤度。

     

  • 图  1  干涉条纹

    图  2  砂岩在不同温度钻井液中浸泡 5 d 后的表面形貌

    图  3  页岩在不同温度钻井液中浸泡5 d后的表面形貌

    图  4  不同温度钻井液浸泡后的岩石表面形貌损伤度

    表  1  岩样关键参数

    岩样孔隙率/
    %
    ρ/
    kg·m−3
    软化系数抗压强度/
    MPa
    抗拉强度/
    MPa
    砂岩1.6~28.026.0~27.50.6~0.9720~1704~25
    页岩0.4~1025.7~27.70.55~0.710~1002~10
    下载: 导出CSV

    表  2  不同温度钻井液浸泡前后岩样的表面形貌特征参数

    岩样T/
    实验
    条件
    Sa/
    μm
    Sq/
    μm
    SkSr/
    %
    岩样T/
    实验
    条件
    Sa/
    μm
    Sq/
    μm
    SkSr/
    %
    砂岩30浸泡前9.314.0−2.4313.4页岩30浸泡前2.435.34−17.412.1
    浸泡后12.816.7−1.8712.5浸泡后3.106.38−12.88.9
    60浸泡前9.213.4−2.2514.060浸泡前2.485.55−18.213.2
    浸泡后15.118.7−1.5312.6浸泡后3.977.44−12.49.3
    90浸泡前9.013.7−2.3213.390浸泡前2.395.57−19.512.3
    浸泡后15.419.7−1.3511.8浸泡后4.128.92−10.38.3
    120浸泡前10.713.2−2.5113.7120浸泡前2.395.92−19.713.7
    浸泡后19.223.2−1.4311.2浸泡后4.7010.71−9.87.2
    150浸泡前10.913.7−2.3413.5150浸泡前2.195.80−19.812.6
    浸泡后18.222.6−1.6212.2浸泡后4.178.66−11.37.67
    下载: 导出CSV
  • [1] NTAWANGA ATHANAS CHRISTOPHER. 水基钻井液和油基钻井液对地层损害的评价[D]. 中国地质大学(北京), 2017.

    NTAWANGA ATHANAS CHRISTOPHER. Evaluation of formation damage caused by water based and oil based drilling fluids[D]. China University of Geosciences (Beijing), 2017
    [2] 康毅力,陈强,游利军,等. 钻井液作用下页岩破裂失稳行为试验[J]. 中国石油大学学报(自然科学版),2016(4):81-89.

    KANG Yili, CHEN Qiang, YOU Lijun, et al. Laboratory studies of shale fracturing behaviors with rock-drilling fluid interactions[J]. Journal of China University of Petroleum (Edition of Natural Science), 2016(4):81-89.
    [3] 薛玉志,李公让,蓝强,等. 超低渗透钻井液稳定井壁的作用机理研究[J]. 石油学报,2009(3):434-439. doi: 10.3321/j.issn:0253-2697.2009.03.022

    XUE Yuzhi, LI Gongrang, LAN Qiang, et al. Interaction mechanisms of ultra-low permeable drilling fluid for stability of borehole wall[J]. Acta Petrolei Sinica, 2009(3):434-439. doi: 10.3321/j.issn:0253-2697.2009.03.022
    [4] 张毅,陈东,张慧,等. 钻井液滤失对煤岩井壁稳定性的影响[J]. 煤矿安全,2021(4):78-84.

    ZHANG Yi, CHEN Dong, ZHANG Hui, et al. Study on the influence of drilling fluid filtration on stability of coalbed wellbore[J]. Safety in Coal Mines, 2021(4):78-84.
    [5] BARTON N B S. Review of predictive capabilities of JRC-JCS model in engineering practice[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1991(4):A209.
    [6] 夏才初, 孙宗颀. 工程岩体节理力学[M]. 上海: 同济大学出版社, 2002: 161.

    XIA Caichu, SUN Zongqi. Joint mechanics of engineering rock mass[M]. Shanghai: Tongji University Press, 2002: 161.
    [7] BELEM T, SOULEY M, HOMAND F. Method for quantification of wear of sheared joint walls based on surface morphology.[J]. Rock Mechanics and Rock Engineering, 2009(6):883-910.
    [8] GRASSELLI G G G I, WIRTH J, EGGER P. Quantitative three-dimensional description of a rough surface and parameter evolution with shearing[J]. International Journal of Rock Mechanics and Mining Sciences, 2002(6):789-800.
    [9] 曹平,范祥,蒲成志,等. 节理剪切试验及其表面形貌特征变化分析[J]. 岩石力学与工程学报,2011(3):480-485.

    CAO Ping, FAN Xiang, PU Chengzhi, et al. Shear test of joint and analysis of morphology characteristics evolution of joint surface[J]. Chinese Journal of Rock Mechanics and Engineering, 2011(3):480-485.
    [10] CHEN Y C Y, CAO P C P, CHEN R C R, et al. Effect of water-rock interaction on the morphology of a rock surface[J]. International Journal of Rock Mechanics and Mining Sciences, 2010(5):816-822.
    [11] 韩文梅,康天合,李建军. 表面形貌对岩石摩擦滑动本构参数影响研究[J]. 岩石力学与工程学报,2013(8):1632-1639.

    HAN Wenmei, KANG Tianhe, LI Jianjun. Influence of surface topography on constitutive parameters of rock frictional sliding[J]. Chinese Journal of Rock Mechanics and Engineering, 2013(8):1632-1639.
    [12] 韩文梅,杨文博,李建军,等. 煤系地层砂岩抛光面粗糙度和粒度分析[J]. 太原理工大学学报,2019(3):286-290.

    HAN Wenmei, YANG Wenbo, LI Jianjun, et al. Analysis of roughness and granularity of sandstone polished surface in coal measure strata[J]. Journal of Taiyuan University of Technology, 2019(3):286-290.
    [13] 杨文博. 酸性环境下岩石表面形貌及强度变化研究[D]. 中北大学, 2020.

    YANG Wenbo. Study on changes of rock surface morphology and strength under acidic environment[D]. North University of China, 2020.
    [14] 黄曼,洪陈杰,杜时贵,等. 岩石结构面形貌分级方法及两级粗糙特性研究[J]. 岩石力学与工程学报,2020(6):1153-1164.

    HUANG Man, HONG Chenjie, DU Shigui, et al. Study on morphological classification method and two-order roughness of rock joints[J]. Chinese Journal of Rock Mechanics and Engineering, 2020(6):1153-1164.
    [15] 卢运虎,陈勉,金衍,等. 钻井液浸泡下深部泥岩强度特征试验研究[J]. 岩石力学与工程学报,2012(7):1399-1405. doi: 10.3969/j.issn.1000-6915.2012.07.012

    LU Yunhu, CHEN Mian, JIN Yan, et al. Experimental study of strength properties of deep mudstone under drilling fluid soaking[J]. Chinese Journal of Rock Mechanics and Engineering, 2012(7):1399-1405. doi: 10.3969/j.issn.1000-6915.2012.07.012
    [16] 向朝纲,陈俊斌,杨刚. 钻井液浸泡作用下脆性页岩强度特征实验[J]. 断块油气田,2018(6):803-806.

    XIANG Chaogang, CHEN Junbin, YANG Gang. Experiment of brittle shale strength characteristics under drilling fluids soaking[J]. Fault-Block Oil & Gas Field, 2018(6):803-806.
    [17] 方朝合,黄志龙,葛稚新,等. 工作液浸泡对页岩裂缝扩展及力学性质影响[J]. 太原理工大学学报,2015(4):414-418.

    FANG Chaohe, HUANG Zhilong, GE Zhixin, et al. The influence of working fluid on fracture propagation and mechanical properties of shale[J]. Journal of Taiyuan University of Technology, 2015(4):414-418.
    [18] 邓金根, 程远方, 陈勉, 等. 井壁稳定预测技术[M]. 北京: 石油工业出版社, 2008: 158.

    DENG Jingen, CHENG Yuanfang, CHEN Mian, et al. Wellbore stability prediction technology[M]. Beijing: Petroleum Industry Press, 2008: 158.
    [19] 汤连生, 王思敬. 岩石化学损伤的机理及量化方法探讨[J]. 岩石力学与工程学报, 2002(3): 314-319.

    TANG Liansheng, WANG Sijing, Analysis on mechanism and quantitative method of chemical damage in water rock interaction[J]. Chinese Journal of Rock Mechanics and Engineering, 2002(3): 314-319.
    [20] 荣传新, 王晓健. 岩石力学[M]. 武汉: 武汉理工大学出版社, 2020: 158.

    RONG Chuanxin, WANG Xiaojian. Rock mechanics[M]. Wuhan: Wuhan University of Technology Press, 2020: 158.
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  543
  • HTML全文浏览量:  258
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-28
  • 录用日期:  2021-04-28
  • 刊出日期:  2021-11-30

目录

    /

    返回文章
    返回