Study on Application of High Efficiency Drilling Fluid for Sidetracking Slim Horizontal Wells
-
摘要: 小井眼井投资成本低,并可采用开窗侧钻使老井复活,是油田经济有效开发的一条途径。小井眼钻井需克服环空压耗高、岩屑携带等技术难题。通过对地层进行分析,滴西区块采用新型高效钻井液体系,分段进行钻井液性能和水力学设计,在二叠系以上地层采用紊流,钻井液的低剪切流变性可保持泵压在24 MPa内,钻井液抑制性和密度支撑对二叠系地层稳定效果良好;石炭系地层采用紊流-层流过渡流型,提高切力和地层胶结作用,保持泵压在26 MPa内,钻井液流型对井壁扰动小,水平段携岩能力强,机械钻速同比提高66.4%。现场应用证明,高效钻井液体系在滴西区块可发挥井壁稳定和提高钻速的优势。Abstract: Slim-hole well drilling not only costs less, it can also be used to revive old wells by sidetracking, making it a way of economic and effective development of oil fields. When drilling slim-hole wells, some problems, such as high annular pressure loss and difficulty in carrying drilled cuttings out of hole, need to be solved. In slim-hole well drilling in Dixi block, a new high efficiency drilling fluid was used. The rheology and hydraulic performance of the drilling fluid was designed for different intervals: turbulent flow was used to drill the formations on top of the Permian system. The low-shear-rate rheology of the drilling fluid can maintain the pump pressures below 24 MPa, and the inhibitive capacity and the density of the drilling fluid are two key factors for the stabilization of the borehole walls. In drilling the Carboniferous system, turbulent-laminar transition flow pattern was used to improve the gel strength of the mud, and helped maintain the pump pressures below 26 MPa. In this way the disturbing of the drilling fluid flow pattern to the borehole walls was minimized, the carrying capacity of the mud in the horizontal section was enhanced, and the ROP increased by 66.4%. Field application showed that this high efficiency drilling fluid has played a role in stabilizing borehole walls and increasing the ROP in the drilling operation in Dixi block.
-
Key words:
- Slim-hole well /
- Sidetrack /
- Horizontal well /
- Drilling fluid
-
表 1 滴西区块梧桐沟组岩样力学特性及主要矿物含量
岩样 抗压强
度/MPa抗剪强
度/MPa硬度 塑性
系数石英/
%斜长
石/%方解
石/%黏土/
%蒙脱
石%1# 40~
8015~
25700~
13001.20~
1.2123 53 3 17 51.6 2# 40~
8015~
30700~
14001.20~
1.2248 32 20 49.3 表 2 1#、2#配方钻井液热滚前后性能
配方 ρ/
g·cm−3实验
条件FV/
sAV/
mPa·sPV/
mPa·sYP/
PaGel/
Pa/PaFLAPI/
mLFLHTHP/
mL1# 1.45 热滚前 42 22 20 1 1.0/2.0 4.5 热滚后 41 23 21 2 1.0/2.5 4.6 11.0 2# 1.40 热滚前 50 34 28 6 3.8 热滚后 48 33 28 5 2.0/4.0 3.5 9.3 注:热滚条件为120 ℃、72 h 表 3 滴西区块二叠系梧桐沟组岩心滚动回收率
钻井液 滚动前质量/g 回收质量/g 回收率/% 1# 50.0 43.91 87.82 2# 50.2 44.76 89.16 表 4 1#、2#配方钻井液的砂床滤失实验
钻井液 P/MPa 砂床滤失量/mL 砂床进入深度/cm 1# 3 0 2.6 2# 5 0 3.8 表 5 滴406井钻井液现场应用性能
层位 ρ/
g·cm−3FV/
sAV/
mPa·sPV/
mPa·sYP/
PaGel/
Pa/PaFLAPI/
mL三叠系 1.20~
1.4140~
4522~
2618~
231~3 (0.5~1.0)/
(1.0~2.0)4.5~
4.8二叠系 1.43~
1.4540~
4421~
2419~
211~3 (1.0~1.5)/
(1.0~3.0)4.0~
4.5石炭系 1.40~
1.4150~
5433~
3628~
315~7 (2.0~3.0)/
(2.0~4.0)2.6~
3.5 -
[1] 高立军,王广新, 郭福祥,等. 大庆油田小井眼开窗侧钻水平井钻井技术[J]. 断块油气田,2008,15(4):94-96.GAO Lijun, WANG Guangxin, GUO Fuxiang, et al. Horizontal well drilling technology by slim hole casing window sidetracking in Daqing oilfield[J]. Fault-block Oil and Gas Field, 2008, 15(4):94-96. [2] 崔国杰,张晓诚,刘军波,等. 小井眼开窗侧钻水平井技术在秦皇岛32-6油田的应用[J]. 中国海上油气,2015,2(4):68-72.CUI Guojie, ZHANG Xiaocheng, LIU Junbo,et al. Development and application of slim hole sidetracking technology package in QHD 32-6 oilfield[J]. China Offshore Oil and Gas, 2015, 2(4):68-72. [3] 白学敏,王高山,李光雨 ,等. 准噶尔盆地滴西地区二叠系梧桐沟组一段储层特征及敏感性分析[J]. 内蒙古石油化工,2015,18(4):131-133. doi: 10.3969/j.issn.1006-7981.2015.04.052BAI Xuemin, WANG Gaoshan, LI Guangyu, et al. Reservoir characteristics and sensitivity analysis of the first member of the Permian Wutong formation in the west Junggar Basin[J]. Inner Mongolia Journal of Petrochemical Industry, 2015, 18(4):131-133. doi: 10.3969/j.issn.1006-7981.2015.04.052 [4] 王倩,王刚,蒋宏伟 ,等. 泥页岩井壁稳定耦合研究[J]. 断块油气田,2012,19(4):517-521.WANG Qian, WANG Gang, JIANG Hongwei,et al. Study on shale wellbore stability coupling[J]. Fault-block Oil and Gas Field, 2012, 19(4):517-521. [5] 王富华,李万清. 大安地区井壁稳定机理与硅醇成膜防塌钻井液技术[J]. 断块油气田,2007,14(4):68-70. doi: 10.3969/j.issn.1005-8907.2007.04.025WANG Fuhua, LI Wanqing. Wellbore stability mechanism and silicate-polymer membrane anti-sloughing drilling fluid technology in Daan area[J]. Fault-block Oil and Gas Field, 2007, 14(4):68-70. doi: 10.3969/j.issn.1005-8907.2007.04.025 [6] 房炎伟,杨佳伟,马玉梁,等. 三塘湖油田微泡沫防漏钻井液技术研究与应用[J]. 石油与天然气化工,2016,45(4):51-58. doi: 10.3969/j.issn.1007-3426.2016.04.011FANG Yanwei, YANG Jiawei, MA Yuliang,et al. Research and application of lead prevention micre-foam drilling fluid in Santanghu oilfield[J]. Chemical Engineering of Oil and Gas, 2016, 45(4):51-58. doi: 10.3969/j.issn.1007-3426.2016.04.011 [7] 李钟,罗石琼,罗恒荣,等. 多元协同防塌钻井液技术在临盘油田探井的应用[J]. 断块油气田,2019,26(1):97-100.LI Zhong, LUO Shiqiong, LUO Hengrong,et al. Application of multivariate synergistic anti-caving drilling fluid technology in exploratory wells of Linpan oilfield[J]. Fault-block Oil and Gas Field, 2019, 26(1):97-100. [8] 王洪伟,黄治华,李新建,等. “适度抑制”及“储层保护”钻井液的研制及应用[J]. 断块油气田,2014,21(6):797-801.WANG Hongwei, HUANG Zhihua, LI Xinjian, et al. Development and application of drilling fluid with moderate inhibitory and reservoir protection[J]. Fault-block Oil and Gas Field, 2014, 21(6):797-801. [9] 杨佳伟,张鹏翔,刘丽,等. 马郎条湖区块石炭系地层快速钻井技术[J]. 化学工程与装备,2018(10):90-106.YANG Jiawei, ZHANG Pengxiang, LIU Li, et al. Fast drilling technology for Carboniferous formation in Malang Tiaohu area[J]. Chemical Engineering & Equipment, 2018(10):90-106. [10] 王克林,刘洪涛,程红伟,等. 存在岩屑床的水平环空钻井液紊流CFD模拟[J]. 断块油气田,2017,24(1):116-119.WANG Kelin, LIU Hongtao, CHENG Hongwei, et al. CFD simulation of trubulent drilling fluid flow in horizontal annuli with cuttings bed[J]. Fault-block Oil and Gas Field, 2017, 24(1):116-119. -