留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温高压耦合条件下油基钻井液的流变特性规律及其数学模型

谢春林 杨丽丽 蒋官澄 敖天 曹峰 贺垠博 聂强勇

谢春林,杨丽丽,蒋官澄,等. 高温高压耦合条件下油基钻井液的流变特性规律及其数学模型[J]. 钻井液与完井液,2021,38(5):568-575 doi: 10.12358/j.issn.1001-5620.2021.05.005
引用本文: 谢春林,杨丽丽,蒋官澄,等. 高温高压耦合条件下油基钻井液的流变特性规律及其数学模型[J]. 钻井液与完井液,2021,38(5):568-575 doi: 10.12358/j.issn.1001-5620.2021.05.005
XIE Chunlin, YANG Lili, JIANG Guancheng, et al.Rheological characteristics of oil base drilling fluids and its mathematical model under coupled hthp conditions[J]. Drilling Fluid & Completion Fluid,2021, 38(5):568-575 doi: 10.12358/j.issn.1001-5620.2021.05.005
Citation: XIE Chunlin, YANG Lili, JIANG Guancheng, et al.Rheological characteristics of oil base drilling fluids and its mathematical model under coupled hthp conditions[J]. Drilling Fluid & Completion Fluid,2021, 38(5):568-575 doi: 10.12358/j.issn.1001-5620.2021.05.005

高温高压耦合条件下油基钻井液的流变特性规律及其数学模型

doi: 10.12358/j.issn.1001-5620.2021.05.005
基金项目: 国家自然科学基金-面上项目“聚合物拓扑结构和序列结构影响其流变调节能力的机理及结构优化研究”(51874329)
详细信息
    作者简介:

    谢春林,在读硕士,1997年生,就读于中国石油大学(北京)海洋油气工程专业,从事钻井液相关研究。E-mail:1040556173@qq.com

    通讯作者:

    杨丽丽,副教授,现在从事钻井液相关研究工作。E-mail:yangll@cup.edu.cn

  • 中图分类号: TE254

Rheological Characteristics of Oil Base Drilling Fluids and Its Mathematical Model under Coupled HTHP Conditions

  • 摘要: 为了探究高温、高压耦合条件下温度、压力对油基钻井液流变性能的影响规律,利用超高密度高温高压钻井液流变仪Fann iX77分别测试了各个高温、高压耦合条件下密度为1.4、1.8、2.2、2.4 g/cm3的抗高温油基钻井液体系的流变特性。结果显示,油基钻井液表观黏度和塑性黏度随温度的升高而逐渐降低,随压力的增大而逐渐增大;动切力随温度的升高表现出先增高后降低的趋势;当温度超过一定值时(160 ℃左右),高温作用对各个高密度油基钻井液流变性的影响都将大大减弱。将所测得的各个高温、高压耦合节点条件下的流变参数进一步分析后得到油基钻井液的温度、压力二元数学模型,误差分析结果显示,该模型对各密度体系的实验测量数据均具有良好的拟合性,可决系数R均大于0.96,因此该数学模型能够较为精确地预测出各个温度、压力耦合条件下油基钻井液的流变性能。

     

  • 图  1  1.4 g/cm3油基钻井液流变性能随温度、压力的变化情况

    图  2  1.8 g/cm3油基钻井液流变性能随温度、压力的变化情况

    图  3  2.2 g/cm3油基钻井液流变性随温度、压力的变化情况

    图  4  2.4 g/cm3油基钻井液流变性能随温度、压力的变化情况

    图  5  油基钻井液lnAV随温度的变化趋势

    图  6  油基钻井液lnAV随压力的变化趋势

    表  1  4种密度油基钻井液的流变性能

    ρ/
    g·cm-3
    T老化/
    PV/
    mPa·s
    YP/
    Pa
    YP/PV/
    Pa/( mPa·s)
    Gel/
    Pa/Pa
    φ6/φ3ES/
    V
    1.4未老化19.07.50.393.0/3.07/4900
    18021.51.80.081.0/1.03/3695
    1.8未老化16.02.50.162.0/2.02/1930
    22027.02.50.091.0/1.52/1421
    2.2未老化43.010.00.234.0/4.09/61241
    22058.55.00.093.0/7.04/3494
    2.4未老化40.011.00.284.0/4.010/91465
    22059.06.50.113.0/7.05/3530
      注:流变性均在65 ℃下测得
    下载: 导出CSV

    表  2  190 ℃各压力下油基钻井液的流变性能

    P/MPaAV/mPa·sPV/mPa·sGel/(Pa/Pa)
    2085.92.1
    4526.79.916.8
    7027.710.517.2
    9530.713.217.5
    12032.815.717.1
    下载: 导出CSV

    表  3  各密度钻井液表观黏度数学模型及误差分析

    ρ/
    g·cm−3
    AV0/
    mPa·s
    γ1γ2γ3R
    1.423.39.72×10−5−2.348×10−29.086×10−30.98
    1.829.58.82×10−5−2.251×10−28.532×10−30.96
    2.263.59.483×10−5−2.529×10−29.328×10−30.99
    2.465.51.471×10−4−3.085×10−21.042×10−20.98
      注:测试温度65 ℃,测试压力0. 1 MPa
    下载: 导出CSV

    表  4  各密度油基钻井液塑性黏度数学模型及误差分析

    ρ/
    g·cm−3
    AV0/
    mPa·s
    η1η2η3R
    1.421.51.402×10−4−3.032×10−21.063×10−20.98
    1.827.08.188×10−5−2.358×10−29.132×10−30.99
    2.258.57.177×10−5−2.075×10−28.21×10−30.98
    2.459.08.703×10−5−2.254×10−29.243×10−30.97
      注:测试温度65 ℃,测试压力0.1 MPa
    下载: 导出CSV
  • [1] ADEKOMAYA, OLUFEMI, OLAFUYI, OLALEKAN. Experimental study of the effect of temperature on the flow behaviour of oil-based muds in Niger delta formation[J]. International Journal of Oil Gas and Coal Technology, 2011, 4(4): 322-334.
    [2] 姜波. 分析高温高压井中温度和地层孔隙压力对钻井液密度的影响[J]. 当代化工研究,2018(5):76-77. doi: 10.3969/j.issn.1672-8114.2018.05.050

    JIANG Bo. Analysis on the influence of temperature and formation pore pressure on the density of drilling fluid in high temperature and high pressure wells[J]. Modern Chemical Research, 2018(5):76-77. doi: 10.3969/j.issn.1672-8114.2018.05.050
    [3] HAMIDU MUWEWE. 高温高压对水基钻井液滤失性的影响[D]. 中国石油大学(华东), 2018.

    HAMIDU MUWEWE. Effect of high temperature and high pressure on filtration of water based muds[D]. China University of Petroleum(East China), 2018.
    [4] ROMMETVEIT R,RKEVOLL K S BJ,王景新. 温度和压力对钻井液流变性的影响[J]. 国外油田工程,1998(7):27-28.

    ROMMETVEIT R, RKEVOLL K S BJ, WANG Jingxing. The influence of temperature and pressure on the rheology of drilling fluid[J]. Foreign Oil Field Engineering, 1998(7):27-28.
    [5] 王敏生,易灿,徐加放. 高温高压对超深井钻井液密度的影响[J]. 石油钻采工艺,2007(5):85-87,124. doi: 10.3969/j.issn.1000-7393.2007.05.024

    WANG Minsheng, YI Can, XU Jiafang. The influence of high temperature and high pressure on the density of drilling fluid in ultra-deep wells[J]. Oil Drilling and Production Technology, 2007(5):85-87,124. doi: 10.3969/j.issn.1000-7393.2007.05.024
    [6] 夏宏伟,谯青松. 测试温度对高密度水基钻井液流变性影响规律研究[J]. 中国石油和化工标准与质量,2012,32(1):103. doi: 10.3969/j.issn.1673-4076.2012.01.081

    XIA Hongwei, QIAO Qingsong. Study on the influence of test temperature on rheology of high-density water-based drilling fluid[J]. China Petroleum and Chemical Standards and Quality, 2012, 32(1):103. doi: 10.3969/j.issn.1673-4076.2012.01.081
    [7] 王富华,王瑞和,王力,等. 深井水基钻井液流变性影响因素的实验研究[J]. 钻井液与完井液,2010(1):17-20. doi: 10.3969/j.issn.1001-5620.2010.01.006

    WANG Fuhua, WANG Ruihe, WANG Li, et al. Experimental research on the influencing factors of rheology of deep well water-based drilling fluid[J]. Drilling Fluid & Completion Fluid, 2010(1):17-20. doi: 10.3969/j.issn.1001-5620.2010.01.006
    [8] WANG Fuhua, TAN Xuechao, WANG Ruihe, et al. High temperature and high pressure rheological properties of high-density water-based drilling fluids for deep wells[J]. Petroleum Science, 2012, 3(9):354-362.
    [9] MAO Hui, YANG Yan, ZHANG Hao. A critical review of the possible effects of physical and chemical properties of subcritical water on the performance of water-based drilling fluids designed for ultra-high temperature and ultra-high pressure drilling applications[J]. Journal of Petroleum Science and Engineering, 2020, 187: 12-21.
    [10] 白小东,蒲晓林. 国外保护储层的油基钻井完井液新技术研究与应用[J]. 精细石油化工进展,2005(12):12-14,17. doi: 10.3969/j.issn.1009-8348.2005.12.004

    BAI Xiaodong, PU Xiaolin. Research and application of new technology of oil-based drilling and completion fluid for reservoir protection abroad[J]. Advances in Fine Petrochemicals, 2005(12):12-14,17. doi: 10.3969/j.issn.1009-8348.2005.12.004
    [11] 罗勇,张海山,王昌军,等. 抗高温油基钻井液的研究[J]. 石油天然气学报,2013,35(8):111-113. doi: 10.3969/j.issn.1000-9752.2013.08.025

    LUO Yong, ZHANG Haishan, WANG Changjun, et al. Research on high temperature resistant oil-based drilling fluid[J]. Journal of Oil and Gas Technology, 2013, 35(8):111-113. doi: 10.3969/j.issn.1000-9752.2013.08.025
    [12] 李建成,杨鹏,关键,等. 新型全油基钻井液体系[J]. 石油勘探与开发,2014,41(4):490-496. doi: 10.11698/PED.2014.04.16

    LI Jiancheng, YANG Peng, GUAN Jian, et al. A new type of whole oil-based drilling fluid[J]. Petroleum Exploration and Development, 2014, 41(4):490-496. doi: 10.11698/PED.2014.04.16
    [13] 鄢捷年,赵雄虎. 高温高压下油基钻井液的流变特性[J]. 石油学报,2003(3):104-109. doi: 10.3321/j.issn:0253-2697.2003.03.023

    YAN Jienian, ZHAO Xionghu. Rheological properties of oil-based drilling fluids under high temperature and high pressure[J]. Acta Petrolei Sinica, 2003(3):104-109. doi: 10.3321/j.issn:0253-2697.2003.03.023
    [14] ZHAO Shengying, YAN Jienian, SHU Yong, et al. Rheological properties of oil-based drilling fluids at high temperature and high pressure[J]. Journal of Central South University of Technology, 2008, 15(1):457-461.
    [15] HERMOSO J, MARTINEZ-BOZA F, GALLEGOS C. Combined effect of pressure and temperature on the viscous behaviour of all-oil drilling fluids[J]. Oil & Gas Sicience and Technology, 2014, 69(7):1283-1296.
    [16] 纪健,袁华玉,李建,等. 深水钻井环境下低温高压对油基钻井液流变性的影响[J]. 内蒙古石油化工,2009,35(21):134-136.

    JI Jian, YUAN Huayu, LI Jian, et al. The effect of low temperature and high pressure on the rheology of oil-based drilling fluid in deep water drilling environment[J]. Inner Mongolia Petrochemical Industry, 2009, 35(21):134-136.
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  526
  • HTML全文浏览量:  219
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-26
  • 刊出日期:  2021-09-30

目录

    /

    返回文章
    返回