留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

裂缝性地层固化类堵漏材料井下运移仿真模拟研究

刘凡 程荣超 郝惠军 冯杰 白英睿

刘凡,程荣超,郝惠军,等. 裂缝性地层固化类堵漏材料井下运移仿真模拟研究[J]. 钻井液与完井液,2021,38(5):560-567 doi: 10.12358/j.issn.1001-5620.2021.05.004
引用本文: 刘凡,程荣超,郝惠军,等. 裂缝性地层固化类堵漏材料井下运移仿真模拟研究[J]. 钻井液与完井液,2021,38(5):560-567 doi: 10.12358/j.issn.1001-5620.2021.05.004
LIU Fan, CHENG Rongchao, HAO Huijun, et al.Simulation study on movement of solidifying lcms for controlling mud losses into fracturing formations[J]. Drilling Fluid & Completion Fluid,2021, 38(5):560-567 doi: 10.12358/j.issn.1001-5620.2021.05.004
Citation: LIU Fan, CHENG Rongchao, HAO Huijun, et al.Simulation study on movement of solidifying lcms for controlling mud losses into fracturing formations[J]. Drilling Fluid & Completion Fluid,2021, 38(5):560-567 doi: 10.12358/j.issn.1001-5620.2021.05.004

裂缝性地层固化类堵漏材料井下运移仿真模拟研究

doi: 10.12358/j.issn.1001-5620.2021.05.004
基金项目: 中石油重大工程现场试验项目 “恶性井漏防治技术与高性能水基钻井液现场试验”(2020F-45);博士后基金“裂缝性地层树脂类固化堵漏材料及固化机理研究”(2020M670585);国家自然科学基金面上项目“深层裂缝性地层剪切响应型凝胶体系构筑与空间自适应堵漏机理”(52074327)
详细信息
    作者简介:

    刘凡,博士,1990年生,毕业于中国石油大学(北京)石油工程学院,主要从事钻井液新材料研发及防漏堵漏研究工作。电话(010)80162088;E-mail:ferman-liu@hotmail.com

  • 中图分类号: TE282

Simulation Study on Movement of Solidifying LCMs for Controlling Mud Losses into Fracturing Formations

  • 摘要: 固化类堵漏材料常用于裂缝性地层恶性漏失堵漏,在裂缝近井壁处形成完整的固结段塞,是堵漏成功的前提。固化类材料进入井筒后难免会与地层流体发生共混,堵漏浆-地层流体两相体积分布随着空间和时间变化,与流体理化性质、施工参数、裂缝几何形貌等有密切关系。为此,采用CFD仿真模拟方法,研究了固化堵漏浆密度和流变参数对堵漏浆裂缝体积分布及流速的影响规律,几何模型选择三维井筒-垂直裂缝模型,模拟压差为1.9 MPa,堵漏浆入口流速为2.5 m/s,两相流模型为VOF模型,井筒和裂缝中原始流体为水基钻井液。模拟结果表明,堵漏浆密度和动切力对其在井筒和裂缝中运移影响少,稠度系数和流性指数对堵漏浆裂缝驻留性能影响显著。稠度系数或流性指数越高,堵漏浆裂缝中流速越小,体积分数越高,低于临界值后,裂缝中将一直以堵漏浆-钻井液共混流体存在。流性指数相比稠度系数对于堵漏浆裂缝驻留能力影响更为显著,牛顿流体和剪切增稠型堵漏浆更利于在裂缝中形成完整段塞。该仿真模拟工作为固化堵漏浆流变性优化提供一定理论基础,有利于提升固化堵漏技术一次成功率。

     

  • 图  1  三维井筒-垂直裂缝几何模型示意图

    图  2  裂缝出口不同密度堵漏浆体积分数和平均流速随时间的变化

    图  3  t=30 s时不同密度堵漏浆在井筒及裂缝中体积分布

    注:红色为堵漏浆,蓝色为钻井液;f~j,分别对应(a)~(e)3D模型中裂缝轴向截面体积分布

    图  4  不同时间下井筒轴向截面堵漏浆体积分布(堵漏浆密度为1.5 g/cm3

    图  5  t=30 s时不同稠度系数堵漏浆在井筒及裂缝中体积分布

    注:(f)~(j)对应(a)~(e) 3D模型中裂缝轴向截面体积分布

    图  6  裂缝出口不同稠度系数堵漏浆体积分数和平均流速随时间变化

    图  7  不同稠度系数堵漏浆注入过程中环空出口质量流量随时间的变化

    图  8  t=30 s时不同流性指数n堵漏浆在井筒及裂缝中体积分布

    注:(a)~(e),对应(1)~(7) 3D模型中裂缝轴向截面体积分布

    图  9  不同时间下井筒轴向截面堵漏浆体积分布(n=1.3)

    图  10  裂缝出口不同流性指数n堵漏浆体积分数和平均流速随时间变化

    图  11  裂缝出口不同动切力堵漏浆体积分数和平均流速随时间变化

    图  12  不同对比组裂缝出口堵漏浆的体积分数和平均流速随时间变化

    表  1  三维井筒-裂缝仿真模型

    参数梯度设置
    堵漏浆密度/(g·cm−31.1、1.2、1.3、1.4、1.5
    堵漏浆流变性能τ0/Pa0、1.5、3.0、5.0、6.5
    K/Pa·sn0.5、2.0、3.5、5.0、6.5
    n0.4、0.5、0.6、0.7、1.0、1.3
    下载: 导出CSV

    表  2  对比组固化堵漏浆流变性能参数

    对比组K/Pa·snnτ0/Pa
    1#0.51.00.3
    2#2.00.71.0
    3#5.00.52.5
    4#10.00.35.0
    下载: 导出CSV
  • [1] 孙金声,白英睿,程荣超,等. 裂缝性恶性井漏地层堵漏技术研究进展与展望[J]. 石油勘探与开发,2021,48(3):630-638.

    SUN Jinsheng, BAI Yingrui, CHENG Rongchao, et al. Research progress and prospect of plugging technologies for fractured formation with severe lost circulation[J]. Petroleum Exploration and Development, 2021, 48(3):630-638.
    [2] 张志磊,胡百中,卞维坤,等. 昭通页岩气示范区井漏防治技术与实践[J]. 钻井液与完井液,2020,37(1):38-45.

    ZHANG Zhilei, HU Baizhong, BIAN Weikun, et al. Mud loss control techniques and practices in Zhaotong demonstration zone of shale gas drilling[J]. Drilling Fluid & Completion Fluid, 2020, 37(1):38-45.
    [3] 谢春来,胡清富,张凤臣,等. 伊拉克哈法亚油田Mishrif组碳酸盐岩储层防漏堵漏技术[J]. 石油钻探技术,2021,49(1):41-46. doi: 10.11911/syztjs.2020125

    XIE Chunlai, HU Qingfu, ZHANG Fengchen, et al. Antileaking and lost circulation control technology for the Mishrif carbonate reservoir in the Halfaya oilfield of Iraq[J]. Petroleum Drilling Techniques, 2021, 49(1):41-46. doi: 10.11911/syztjs.2020125
    [4] 李文博,李公让. 可控化聚合物凝胶堵漏材料的研究进展[J]. 钻井液与完井液,2021,38(2):133-141. doi: 10.3969/j.issn.1001-5620.2021.02.001

    LI Wenbo, LI Gongrang. Research progress of controllable polymer gel lost circulation materials[J]. Drilling Fluid & Completion Fluid, 2021, 38(2):133-141. doi: 10.3969/j.issn.1001-5620.2021.02.001
    [5] 郭锦棠,杜江波,冯杰,等. 高温高压钻井用堵漏材料的制备及性能研究[J]. 天津大学学报(自然科学与工程技术版),2021,54(6):593-598.

    GUO Jintang, DU Jiangbo, FENG Jie, et al. Preparation and performance of plugging material for high-temperature and high-pressure drilling[J]. Journal of Tianjin University (Science and Technology), 2021, 54(6):593-598.
    [6] 张浩,佘继平,杨洋,等. 可酸溶固化堵漏材料的封堵及储层保护性能[J]. 油田化学,2020,37(4):581-586,592.

    ZHANG Hao, SHE Jiping, YANG Yang, et al. Plugging and formation damage control performance of a lost circulation material[J]. Oilfield chemistry, 2020, 37(4):581-586,592.
    [7] 赵启阳,邓慧,王伟,等. 一种可固化堵漏工作液的室内研究[J]. 钻井液与完井液,2013,30(1):41-44. doi: 10.3969/j.issn.1001-5620.2013.01.011

    ZHAO Qiyang, DENG Hui, WANG Wei, et al. Laboratory study on curing lost circulation control fluid[J]. Drilling Fluid & Completion Fluid, 2013, 30(1):41-44. doi: 10.3969/j.issn.1001-5620.2013.01.011
    [8] 孙金声,赵震,白英睿,等. 智能自愈合凝胶研究进展及在钻井液领域的应用前景[J]. 石油学报,2020,41(12):1706-1718. doi: 10.7623/syxb202012023

    SUN Jinsheng, ZHAO Zhen, BAI Yingrui, et al. Progress in research of intelligent self-healing gel and its application prospects in the field of drilling fluid[J]. Acta Petrolei Sinica, 2020, 41(12):1706-1718. doi: 10.7623/syxb202012023
    [9] XU B, ZHOU S, HE F, et al. Using particle image velocimetry to evaluate the displacement efficiency of drilling mud in horizontal well cementing[J]. Journal of Petroleum Science and Engineering, 2020, 195(2020):107647-107655.
    [10] WANG Jingtang, SUN Baojiang, LI Hao, et al. Numerical simulation of cementing displacement interface stability of extended reach wells[J]. Journal of Hydrodynamics, 2018, 30(3):420-432. doi: 10.1007/s42241-018-0051-4
    [11] 陶谦,周仕明,张晋凯,等. 水泥浆流变性对水平井固井顶替界面的影响——基于天河一号大规模集群计算平台的数值模拟[J]. 石油钻采工艺,2017,39(2):185-191.

    TAO Qian, ZHOU Shiming, ZHANG Jinkai, et al. Effect of rheological property of slurry on cementing displacement interface of horizontal well: the numerical simulation based on large-scale cluster computing platform Tianhe-1[J]. Oil Drilling & Production Technology, 2017, 39(2):185-191.
    [12] 杨谋,唐大千,袁中涛,等. 固井注水泥浆顶替效率评估的新模型[J]. 天然气工业,2019,39(6):115-122. doi: 10.3787/j.issn.1000-0976.2019.06.013

    YANG Mou, TANG Daqian, YUAN Zhongtao, et al. A new model for evaluating the displacement efficiency of cement slurry[J]. Natural Gas Industry, 2019, 39(6):115-122. doi: 10.3787/j.issn.1000-0976.2019.06.013
    [13] 魏凯, 褚冰川, 包莉军, 等. 基于相场法的偏心环空注水泥顶替过程数值模拟 [J]. 钻采工艺, 2020, 43(3): 123-126.

    WEI Kai, CHU Binchuan, BAO Lijun, et al. Numerical simulation of cementing displacement process in eccentric annulus based on phase field method[J]. Drilling & Production Technology, 2020, 34(3): 123-126.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  577
  • HTML全文浏览量:  280
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-23
  • 录用日期:  2021-05-23
  • 刊出日期:  2021-09-30

目录

    /

    返回文章
    返回