Synthesis and Evaluation of A pH Stimulus-responsive High Temperature-resistant Reversible Emulsifier
-
摘要: 针对油基钻井液在应用后期存在的滤饼难以清除和含油钻屑不易处理难题,基于pH刺激响应型乳化剂对乳状液类型的智能调控机制,以1-溴代长链烷烃R和二乙醇胺为原料,通过霍夫曼烷基化反应合成了一种pH响应可逆转乳化剂RE-HT,并以其为核心研制了一种抗高温可逆乳化钻井液。红外光谱分析和乳状液酸/碱触变实验结果表明,合成产物分子结构中含有pH响应性叔胺基团,可在酸/碱刺激下于油包水型乳化剂和水包油型乳化剂之间灵活切换,性能优于其余3种pH响应可逆转乳化剂。热重分析和电稳定性测试结果显示,RE-HT在空气氛围下的初始热分解温度高达257 ℃,含5%RE-HT的基础乳状液在220 ℃高温热滚后破乳电压达1098 V,表明其具有良好的热稳定性和乳化性能。研制的可逆乳化钻井液基础性能良好,在15%饱和盐水侵和15%泥页岩钻屑侵后依然可保持良好的流变与滤失性能,破乳电压高于850 V。同时酸洗后的滤饼清除率达98.98%,岩屑含油量低于1%,EC50为2.05×105 mg/L,满足钻屑排放标准,在复杂深井钻井中有较好的应用前景。Abstract: The oil-based drilling fluid presences the problems of difficulty to remove filter cake and treat oily cuttings. Based on the intelligent regulation mechanism of the pH stimulus-responsive emulsifier on the emulsion type, a pH-responsive reversible emulsifier RE-HT was synthesized through Hoffman reaction with 1-Bromo long-chain Alkane R and Diethanolamine to solve these problems. And a reversible emulsion drilling fluid was developed by utilizing it as the core agent. The infrared spectroscopy analysis and emulsion acid/base thixotropy test showed that the synthesized product contains the pH-responsive tertiary amine group and can be flexibly switched between water-in-oil emulsifier and oil-in-water emulsifier under acid/alkali stimulation. Thermogravimetric analysis and electric stability tests showed that the initial thermal decomposition temperature of RE-HT in an air atmosphere is as high as 257 ℃, and the demulsification voltage of the basic emulsion with 5% RE-HT is 1098 V after aging at 220 ℃. This indicated that it has good thermal stability and emulsifying performance. The developed reversible emulsion drilling fluid has good basic performance and can tolerate high-temperature up to 200 ℃, saturated saltwater contamination up to 15%, and drilling cuttings contamination up to 15%. The filter cake removal rate after pickling is 98.98%, the oil content of cuttings after pickling is less than 1%, EC50 is 2.05×105 mg/L, meeting the cuttings discharge standard and exhibiting a good application prospect in complex deep wells drilling.p wells drilling.
-
表 1 乳化剂RE-HT理化性能与生物毒性
ρ/
g/cm3HLB CMC/
mol/Lγcmc/
mN/m胺值/
mgKOH/gEC50/
mg/L0.907 5.82 2.79×10−4 22.4 157 5.68×105 注:生物毒性检测中RE-HT浓度为5% 表 2 基于RE-HT的可逆乳化钻井液体系的基础性能
测试
条件钻井液
类型AV/
mPa∙sPV/
mPa∙sYP/
PaGel/
Pa/PaFLHTHP/
mLES/
VpH 热滚前 油包水 43.5 36 7.67 3.0/3.5 1030 8.47 热滚后 油包水 55.0 41 14.31 5.5/6.5 4.4 1092 8.43 酸触转相 水包油 61.5 46 15.84 3.5/5.5 11.5 0 6.58 碱触回转 油包水 59.0 44 15.33 5.5/7.0 4.6 913 8.52 注:老化条件为180 ℃×16 h;流变与破乳电压测试温度为50 ℃;FLHTHP测试条件为180 ℃、3.5 MPa;酸触用酸为50% 乙酸水溶液;碱触用碱为20%NaOH水溶液 表 3 基于RE-HT的可逆乳化钻井液体系的抗温性能
T老化/
℃t老化/
hAV/
mPa∙sPV/
mPa∙sYP/
PaGel/
Pa/PaFLHTHP/
mLES/
V180 16 55.0 41 14.31 5.5/6.5 4.4 1092 48 49.0 37 12.26 5.0/6.0 6.0 1073 72 46.5 36 10.73 4.0/5.0 5.6 1017 200 16 52.0 40 12.26 5.0/6.0 8.4 987 220 16 46.0 38 8.18 3.0/3.5 17.3 937 注:流变与破乳电压测试温度为50 ℃;FLHTHP测试条件为180 ℃、3.5 MPa 表 4 RE-HT配制的可逆乳化钻井液体系的抗污染性能
污染
条件测试
条件AV/
mPa∙sPV/
mPa∙sYP/
PaGel/
Pa/PaFLHTHP/
mLES/
V5%饱和
盐水热滚前 50.5 36 14.82 4.5/6.0 1072 热滚后 58.5 43 15.84 5.0/6.0 4.6 962 10%饱和
盐水热滚前 52.0 36 16.35 5.0/6.5 965 热滚后 60.5 44 16.86 5.5/6.5 5.6 859 15%饱和
盐水热滚前 61.0 44 17.37 6.0/7.0 950 热滚后 67.5 48 19.93 6.5/8.0 5.4 883 10%泥页
岩钻屑热滚前 45.0 37 8.18 3.0/3.5 1045 热滚后 56.0 41 15.33 5.5/6.0 4.3 1078 15%泥页
岩钻屑热滚前 46.5 37 9.71 3.0/3.5 1145 热滚后 57.0 41 16.35 5.5/6.5 4.7 1176 注:老化条件为180 ℃×16 h;流变与破乳电压测试温度为50 ℃;FLHTHP测试条件为180 ℃、3.5 MPa 表 5 常规油基钻井液和可逆乳化钻井液滤饼清除率对比
钻井液样品 m0/g m1/g m2/g Rr/% 常规油基钻井液 43.76 45.39 44.34 64.42 可逆乳化钻井液 42.20 45.14 42.23 98.98 注:常规油基钻井液配方:255 mL 5#白油+3%主乳化剂+2% 辅乳化剂+3%有机土130D+3%CaO+2%微纳米封堵剂OSD-1+1.5%润湿剂+45 mL 25%CaCl2溶液+重晶石 表 6 常规油基和可逆乳化钻井液含油钻屑处理效果对比
检测项目 常规油基
钻井液岩屑可逆乳化
钻井液岩屑容许值 酸洗前 酸洗后 酸洗前 酸洗后 一级海域 含油量/% 11.38 6.42 12.13 0 <1 EC50/(mg·L−1) 3.74×104 2.05×105 >3.0×104 注:常规油基钻井液配方:255 mL 5#白油+3%主乳化剂+2%辅乳化剂+3%有机土130D+3%CaO+2%微纳米封堵剂OSD-1+1.5%润湿剂+45 mL 25%CaCl2溶液+重晶石 -
[1] 覃勇,蒋官澄,邓正强,等. 抗高温油基钻井液主乳化剂的合成与评价[J]. 钻井液与完井液,2016,33(1):6-10.QIN Yong, JIANG Guancheng, DENG Zhengqiang, et al. Synthesis and evaluation of a primary emulsifier for high temperature oil base drilling fluidr[J]. Drilling Fluid & Completion Fluid, 2016, 33(1):6-10. [2] 王星媛,陆灯云,吴正良. 抗220 ℃高密度油基钻井液的研究与应用[J]. 钻井液与完井液,2020,37(5):550-554,560.WANG Xingyuan, LU Dengyun, WU Zhengliang. Study and application of a high density oil base drilling fluid with high temperature resistance of 220 ℃[J]. Drilling Fluid & Completion Fluid, 2020, 37(5):550-554,560. [3] 霍锦华,张瑞,杨磊,等. CTAB诱导膨润土乳液转相机理及其在可逆乳化油基钻井液中的应用[J]. 石油学报,2018,39(1):122-128. doi: 10.7623/syxb201801012HUO Jinhua, ZHANG Rui, YANG Lei, et al. Phase transition mechanism of CTAB inducing bentonite emulsion and its application in reversible emulsification oil-based drilling fluids[J]. Acta Petrolei Sinica, 2018, 39(1):122-128. doi: 10.7623/syxb201801012 [4] 黄贤斌,蒋官澄,万伟,等. 含油钻屑微乳状液除油剂的研制及机理[J]. 石油学报,2016,37(6):815-820.HUANG Xianbin, JIANG Guancheng, WAN Wei, et al. Preparation and mechanism of microemulsion deoiler for oily cuttings[J]. Acta Petrolei Sinica, 2016, 37(6):815-820. [5] 黄维巍,周泽军,何勇,等. 页岩气开发油基钻屑真空热解资源化处理[J]. 环境工程学,2017,11(8):4783-4788.HUANG Weiwei, ZHOU Zejun, HE Yong, et al. Resources utilization of oil-based drilling cuttings vacuum pyrolysising in shale gas developing[J]. Chinese Journal of Environmental Engineering, 2017, 11(8):4783-4788. [6] 黄志强,徐子扬,权银虎,等. 锤磨热解析处理油基钻井液钻屑的效果评价[J]. 天然气工业,2018,38(8):83-90. doi: 10.3787/j.issn.1000-0976.2018.08.012HUANG Zhiqiang, XU Ziyan, QUAN Yinhu, et al. Effect evaluation of hammer-milling thermal desorption technology on oil-based drilling fluid cuttings[J]. Natural Gas Industry, 2018, 38(8):83-90. doi: 10.3787/j.issn.1000-0976.2018.08.012 [7] PATEL, A D. Reversible invert emulsion drilling fluids: a quantum leap in technology[J]. SPE Drill & Completion, 1999, 14(4):274-279. [8] 任妍君,蒋官澄,张弘,等. 基于乳状液转相技术的钻井液新体系室内研究[J]. 石油钻探技术,2013,41(4):87-91. doi: 10.3969/j.issn.1001-0890.2013.04.019REN Yanjun, JIANG Guancheng, ZHANG Hong, et al. Laboratory study of a novel drilling fluid based on emulsion phase diversion technology[J]. Petroleum Drilling Techniques, 2013, 41(4):87-91. doi: 10.3969/j.issn.1001-0890.2013.04.019 [9] 武文涛,张永民,刘雪锋. 叔胺基CO2开关表面活性剂的合成及性能研究[J]. 日用化学工业,2016,46(5):251-256.WU Wentao, ZHANG Yongmin, LIU Xuefeng. Synthesis and performance of tertiary amine-based CO2 switchable surfactant[J]. China Surfactant Detergent & Cosmetics, 2016, 46(5):251-256. [10] REN Yanjun, JIANG Guancheng, ZHANG Zhihang, et al. Phase inversion pathways of emulsions stabilized by ethoxylated alkylamine surfactants[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 452: 95-102. [11] 刘满辉. 多甲氧基黄酮羟乙基和胺烷基衍生物的合成研究[D]. 长沙: 湖南大学, 2018.LIU Manhui. Study on the synthesis of polymethoxy flavonoid hydroxyethyl and amino alkyl derivatives[D]. Changsha: Hunan University, 2018. [12] 周家华,崔英德. 表面活性剂HLB值的分析测定与计算Ⅰ. HLB值的分析测定[J]. 精细石油化工,2001(2):11-14. doi: 10.3969/j.issn.1003-9384.2001.02.004ZHOU Jiahua, CUI Yingde. Analysis, determination, and calculation of HLB value of surfactant Ⅰ. Analysis and determination of HLB value[J]. Speciality Petrochemicals, 2001(2):11-14. doi: 10.3969/j.issn.1003-9384.2001.02.004 [13] 刘明华,胡小燕,国安平,等. 油基钻井液用抗高温乳化剂的合成及性能[J]. 精细石油化工进展,2017,18(4):9-12. doi: 10.3969/j.issn.1009-8348.2017.04.003LIU Minghua, HU Xiaoyan, GUO Anping, et al. Synthesis and performance of anti-high temperature emulsifier for oil-based drilling fluid[J]. Speciality Petrochemicals, 2017, 18(4):9-12. doi: 10.3969/j.issn.1009-8348.2017.04.003 [14] 邓小刚,罗飞,马丽华,等. 磺基甜菜碱的合成及其在水包油乳化钻井液中的应用[J]. 钻井液与完井液,2017,34(3):33-38. doi: 10.3969/j.issn.1001-5620.2017.03.006DENG Xiaogang, LUO Fei, MA Lihua, et al. Sulfonated betaine: synthesis and application in oil-in-water emulsions[J]. Drilling Fluid & Completion Fluid, 2017, 34(3):33-38. doi: 10.3969/j.issn.1001-5620.2017.03.006 [15] WANG Fang, PI Jing, LIU Jingyu, et al. Highly-efficient separation of oil and water enabled by a silica nanoparticle coating with pH-triggered tunable surface wettability[J]. Journal of Colloid and Interface Science, 2019, 557:65-75. doi: 10.1016/j.jcis.2019.08.114 [16] LI Hao, CENGIZ Yegin, CHENG Chen, et al. pH-Responsive emulsions with supramolecularly assembled Shells[J]. Industrial & Engineering Chemistry Research, 2018, 57(28):9231-9239. [17] 杜坤. 油基钻井液新型高效乳化剂的研制与评价[J]. 钻井液与完井液,2020,37(5):555-560.DU Kun. Development and evaluation of a new high efficiency emulsifier for oil base drilling fluids[J]. Drilling Fluid & Completion Fluid, 2020, 37(5):555-560. [18] 周浩. 含油钻屑的热解特性研究[D]. 南京: 东南大学, 2017.ZHOU Hao. Study on the pyrolysis characteristics of oily cuttings[D]. Nanjing: Southeast University, 2017. -