留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强封堵防塌剂XZ-OSD在准噶尔盆地南缘山前构造带的现场应用

付超胜 敖天 余加水 蒋官澄 谢春林 孔德昌 杨丽丽

付超胜,敖天,余加水,等. 强封堵防塌剂XZ-OSD在准噶尔盆地南缘山前构造带的现场应用[J]. 钻井液与完井液,2021,38(4):469-473 doi: 10.12358/j.issn.1001-5620.2021.04.011
引用本文: 付超胜,敖天,余加水,等. 强封堵防塌剂XZ-OSD在准噶尔盆地南缘山前构造带的现场应用[J]. 钻井液与完井液,2021,38(4):469-473 doi: 10.12358/j.issn.1001-5620.2021.04.011
FU Chaosheng, AO Tian, YU Jiashui, et al.Field application of a plugging borehole wall anti-collapse agent XZ-OSD in thepiedmont structural belt on the south margin of Junggar basin[J]. Drilling Fluid & Completion Fluid,2021, 38(4):469-473 doi: 10.12358/j.issn.1001-5620.2021.04.011
Citation: FU Chaosheng, AO Tian, YU Jiashui, et al.Field application of a plugging borehole wall anti-collapse agent XZ-OSD in the piedmont structural belt on the south margin of Junggar basin[J]. Drilling Fluid & Completion Fluid,2021, 38(4):469-473 doi: 10.12358/j.issn.1001-5620.2021.04.011

强封堵防塌剂XZ-OSD在准噶尔盆地南缘山前构造带的现场应用

doi: 10.12358/j.issn.1001-5620.2021.04.011
基金项目: 中国石油西部钻探工程有限公司钻井液分公司项目“油基钻井液用封堵防塌剂(XZ-OSD)委托研发服务”(HX20200871)
详细信息
    作者简介:

    付超胜,工程师,1981年生,毕业于大庆石油学院应用化学专业,现从事钻井液技术研究。电话13031396787;E-mail:2644157551@qq.com

    通讯作者:

    蒋官澄,电话 15010025286; E-mail:m15600263100_1@163.com

  • 中图分类号: TE283

Field Application of a Plugging Borehole Wall Anti-Collapse Agent XZ-OSD in the Piedmont Structural Belt on the South Margin of Junggar Basin

  • 摘要: 为解决准噶尔盆地南缘山前构造带钻井过程中出现的井壁失稳及井漏问题,通过对目标地区的岩样和掉块进行实验分析,明确了目标地区的井壁失稳机理。根据实验结果知道,主要是地层破碎性、油相损害和强水敏性导致目的地区的井壁失稳。针对井壁失稳机理,采用油基钻井液避免地层强水敏性引起的井壁失稳,并研选了一种油基钻井液强封堵防塌剂XZ-OSD,XZ-OSD粒子通过封堵不同尺寸孔缝,胶结破碎性地层,在岩石表面形成疏油吸附层,避免地层破碎性、油相损害引起的井壁失稳。现场试验表明, 对比邻井,XZ-OSD降低GHW001三、四开阶段井径扩大率46%~49%;对比四开阶段,XZ-OSD降低呼探1井五开井段井径扩大率83.3%。解决了准噶尔盆地南缘地区井壁失稳难题,为该区域优质钻井提供了钻井液技术支撑。

     

  • 图  1  封堵剂XZ-OSD结构图

    图  2  XZ-OSD的扫描电镜图

    图  3  各井三开和四开井径扩大率变化

    表  1  XZ-OSD对钻井液性能的影响

    配方实验PV/
    mPa·s
    YP/
    Pa
    Gel/
    Pa/Pa
    ES/
    V
    井浆热滚前7816.05.0/21.0
    基浆热滚前509.03.0/16.01278
    基浆+
    3%XZ-OSD
    热滚前529.53.0/17.01685
    150 ℃、16 h518.02.5/11.01902
    150 ℃、72 h516.52.0/10.02001
    基浆+
    5%XZ-OSD
    热滚前6111.53.5/17.01751
    150 ℃、16 h5811.02.5/13.02047
    150 ℃、72 h5510.02.0/11.02047
    基浆+
    10XZ-OSD
    热滚前6816.03.5/16.01885
    150 ℃、16 h7111.53.0/14.02047
    150 ℃、72 h7010.03.0/12.02047
      注:井浆呼探1井的井浆(油水比为90∶10),基浆为呼探1井井浆+3#白油(井浆体积的10%)+3%主乳化剂+2%辅乳化剂
    下载: 导出CSV

    表  2  砂盘封堵测试结果

    t/
    min
    不同孔喉砂盘下的FLHTHP(mL)/承压(MPa)
    20 μm40 μm55 μm120 μm150 μm
    1.00.1/150.1/150.1/152.4/13.51.6/8.0
    2.50.1/150.1/150.1/153.1/15.04.5/13.5
    5.00.1/150.1/150.1/153.4/15.010.2/13.5
    7.50.1/150.1/150.1/153.4/15.018.8/15.0
    15.00.1/150.1/150.1/153.4/15.020.2/15.0
    25.00.1/150.1/150.1/153.4/15.020.9/15.0
    30.00.1/150.1/150.1/153.4/15.021.1/15.0
    40.00.1/150.1/150.1/153.4/15.023.0/15.0
    50.00.1/150.1/150.1/153.4/15.025.9/15.0
    60.00.1/150.2/150.2/153.4/15.026.8/15.0
      注:热滚条件为100 ℃、16 h,FLHTHP在100 ℃测定
    下载: 导出CSV

    表  3  各井三开、四开井径扩大率对比

    井号三开平均
    井径/mm
    三开平均井径
    扩大率/%
    四开平均
    井径/mm
    四开平均井径
    扩大率/%
    GHW001450.721.38316.101.57
    高101312.754.50225.884.62
    高102344.7610.78217.922.94
    高泉5340.029.26244.2013.10
    下载: 导出CSV
  • [1] 辜延容. 准噶尔盆地南缘构造特征与油气分布 [D].成都理工大学, 2015.

    GU Yanrong. The structural feature and oil-gas distribution in the southern margin of Junggar basin [D]. Chengdu University of Technology, 2015.
    [2] 张雄,余进,毛俊,等. 准噶尔盆地玛东油田水平井高性能油基钻井液技术[J]. 石油钻探技术,2020,48(6):21-27.

    ZHANG Xiong, YU Jin, MAO Jun, et al. High-performance oil-based drilling fluid technology for horizontal wells in the Madong Oilfield, Junggar Basin[J]. Petroleum Drilling Technology, 2020, 48(6):21-27.
    [3] 景丰,姚志奇. 延长组页岩气水平井水基钻井液体系研制与应用[J]. 大庆石油地质与开发,2019,38(6):155-161.

    JING Feng, YAO Zhiqi. Development and application of water-based drilling fluid system in Yanchang Formation shale-gas horizontal wells[J]. Daqing Petroleum Geology and Development, 2019, 38(6):155-161.
    [4] 康毅力,许成元,唐龙,等. 构筑井周坚韧屏障: 井漏控制理论与方法[J]. 石油勘探与开发,2014,41(4):473-479.

    KANG Yili, XU Chengyuan, TANG Long, et al. Constructing a tough shield around the wellbore: Theory and method for lost-circulation control[J]. Petroleum Exploration and Development, 2014, 41(4):473-479.
    [5] ALKINANI H H, AL-HAMEEDI A T T, DUNN-NORMAN S, et al. Using data mining to stop or mitigate lost circulation[J]. Journal of Petroleum Science and Engineering, 2019, 173:1097-1108.
    [6] 宋碧涛,马成云,徐同台,等. 硬脆性泥页岩钻井液封堵性评价方法[J]. 钻井液与完井液,2016,33(4):51-55.

    SONG Bitao, MA Chengyun, XU Tongtai, et al. Method for evaluating the performance of drilling fluids plugging fractures in hard and brittle shale[J]. Drilling Fluid & Completion Fluid, 2016, 33(4):51-55.
    [7] 吴继伟,张晨,黄鸿,等. 准噶尔盆地南缘超深井扩眼尺寸优选方法[J]. 新疆石油天然气,2020,16(3):33-37.

    WU Jiwei, ZHANG Chen, HUANG Hong, et al. Reaming-ole size optimizing method for ultra-deep wells in southern margin of Junggar basin[J]. Xinjiang Oil & Gas, 2020, 16(3):33-37.
    [8] 张凤奇,鲁雪松,卓勤功,等. 准噶尔盆地南缘下组合储层异常高压成因机制及演化特征[J]. 石油与天然气地质,2020,41(5):1004-1016.

    ZHANG Fengqi, LU Xuesong, ZHUO Qingong, et al. Genetic mechanism and evolution characteristics of overpressure in the lower play at the southern margin of Junggar basin, northwestern China[J]. Oil & Gas Geology, 2020, 41(5):1004-1016.
    [9] PEI Z, QIAN-DING L I, HUI L I, et al. Advances in development of expandible lost circulation materials[J]. Oilfield Chemistry, 2009, 26(1):111-114.
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  519
  • HTML全文浏览量:  231
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-29
  • 网络出版日期:  2023-11-09
  • 刊出日期:  2021-07-31

目录

    /

    返回文章
    返回