Analysis of the Mode and Mechanisms of Destabilization of Micro Foams
-
摘要: 以实验为基础,观察了微泡沫流体3种失稳形式:析液、沉降或两者同时存在,研究了微泡沫体系的黏度和切力、稳泡剂分子量、搅拌速度、温度、Na+和Ca2+等对失稳形式的影响,并对比各失稳状态前微泡沫流体的界面膜黏度和强度,分析了其内在失稳机制,为构建抗温抗盐的微泡沫体系提供技术借鉴。总体来说,当基液黏度及动塑比低,或者稳泡介质为轻质凝胶时,微泡沫流体失稳表现为析液;当基液稳泡介质密度高,或凝胶分子量过高致使束缚自由水增多,造成液膜厚重时,微泡沫体系失稳表现为沉降;而经不同高温老化或者被不同浓度金属离子污染情况下,失稳表现形式可能是析液和沉降兼有。Abstract: Micro-foam fluid destabilizes in three ways: separation of the liquid phase, settlement, or both. In our study the effects of several factors on the way of foam destabilization were studied, including the viscosity and gel strengths of the micro-foam, the molecular weight of the foam stabilizer, speed for mixing the foam, temperature, Na+ and Ca2+ etc. The viscosity and strength of the interfacial films of the micro-foam prior to destabilization were compared with each other and the intrinsic mechanisms of the destabilization of the micro-foams were analyzed. These studies shall be able to provide technical references to the formulation of micro-foam fluids with thermal stability and salt-resistance. Generally speaking, when the viscosity and the ratio of yield point over plastic viscosity of the base fluid are low, or when medium for stabilizing the micro-foam is a kind of lightweight gel, the micro-foam destabilizes in a way of liquid separation; when the density of the base fluid stabilizing the micro-foam is high, or when the molecular weight of the gel is too high resulting an in increase in the amount of bound free water, and hence an increase in the thickness and weight of the liquid films, the micro-foam destabilizes in a way of settlement. When the micro-foam is aged at different temperatures or contaminated with different concentrations of metal ions, it destabilizes in a way of both liquid separation and settlement.
-
Key words:
- Micro-foam /
- Liquid separation /
- Settlement /
- Viscosity of liquid film /
- Strength of liquid film
-
表 1 低黏度和切力引起的微泡沫基液流变性能
配方 稳泡
剂t1/2/
minρ/
g·cm−3AV/
mPa·sPV/
mPa·sYP / PV /
Pa/mPa·s1# 2.0%钠膨润土浆 32.0 0.37 18.5 13 0.42 2# 0.5%LV-PAC 32.7 0.43 33.0 24 0.38 3# 0.5%MV-PAC 44.7 0.53 43.5 29 0.50 注:LV-PAC和MV-PAC的分子量分别为1×106~2×106和4×106~5×106 表 2 HV-PAC与XC形成的微泡沫流体的基本性能
稳泡剂 t 1/2/
hρ/
g·cm−3AV/
mPa·sPV/
mPa·sYP/PV/
Pa/mPa·sHV-PAC 0.83 0.59 51.5 27 0.91 XC >72 0.74 56.5 18 2.14 表 3 微泡沫流体在不同搅拌速度下的基本性能
γ/
r·min−1t 1/2/
/hρ/
g·cm−3AV/ mPa·s PV/ mPa·s Gel/
Pa/PaYP/PV/
Pa/mPa·s失稳
形式700 6 0.67 38.0 23 3.2/5.0 0.65 沉降 800 28 0.63 42.0 25 3.0/5.5 0.68 沉降 900 34 0.53 54.5 34 4.0/6.5 0.60 沉降 1000 32 0.50 60.0 39 4.0/8.0 0.54 沉降 1100 26 0.48 57.5 38 4.5/8.0 0.51 先析液
后沉降表 4 微泡沫钻井液体系高温老化前后的性能
T/
℃t 1/2//
hρ/
g·cm−3AV/
mPa·sPV/
mPa·sYP / PV/
Pa/mPa·s室温 34.00 0.72 43.0 27 0.59 150 12.00 0.49 37.5 26 0.44 160 0.33 0.95 22.5 15 0.50 1.06 22.0 17 0.29 注:老化时间为16 h 表 5 不同浓度的NaCl对微泡沫体系稳定性能的影响
NaCl/
%t 1/2/
hρ/
g·cm−3AV/
mPa·sPV/
mPa·sYP/PV/
Pa/mPa·s失稳
形式0 36 0.71 25.5 11 1.32 沉降 5 19 0.73 25.5 12 1.13 沉降 10 5 0.79 25.0 12 1.08 沉降 15 >96 0.80 27.0 16 0.69 析液 25 >96 0.84 35.0 19 0.84 析液 30 >96 0.85 36.0 20 0.80 析液 表 6 不同浓度CaCl2对微泡沫性能的的影响
CaCl2/
%t 1/2/
hρ/
g·cm−3AV/ mPa·s PV/ mPa·s YP/PV/
Pa/mPa·s失稳
形式0 56.00 0.71 25.5 11 1.32 沉降 5 11 .00 0.68 25.0 13 0.92 沉降 10 7.00 0.70 32.5 19 0.71 絮凝沉降 15 0.80 0.70 32.5 21 0.55 絮凝沉降 20 0.17 0.93 15.5 14 0.11 先絮沉后析液 25 >1.04 18.0 13 0.38 无微泡 -
[1] 崔文青. 可循环泡沫钻井液性能及应用现状[J]. 西部探矿工程,2010(11):46-48.CUI Wenqing. Performance and application status of circulating foam drilling fluid[J]. Western Prospecting Project, 2010(11):46-48. [2] 宋菲. 无黏土相可循环微泡沫钻井液的室内研究[J]. 石油化工应用,2015,34(7):97-103.SONG Fei. Research on circulative micro-foam drilling fluid system with clay-free[J]. Petrochemical Industry Application, 2015, 34(7):97-103. [3] 刘振东,唐代绪,刘从军,等. 无固相微泡沫钻井液的研究及应用[J]. 钻井液与完井液,2012,29(3):33-35.LIU Zhendong, TANG Daixv, LIU Congjun, et al. Research and application of solid-free micro-foam drilling fluid[J]. Drilling Fluid & Completion Fluid, 2012, 29(3):33-35. [4] 杨虎,郡捷年,陈涛. 新型水基微泡沫钻井液的室内配方优选和性能评价[J]. 石油钻探技术,2006,34(2):41-44.YANG Hu, JUN Jienian, CHEN Tao. Lab study and evaluation of a new water-based aphrons drilling fluid[J]. Oil Drilling Technology, 2006, 34(2):41-44. [5] 王洪军,焦震,郑秀华,等. 大庆油田微泡沫钻井液的研究与应用[J]. 石油钻采工艺,2007,29(5):88-92.WANG Hongjun, JIAO Zhen, ZHENG Xiuhua, et al. Researchand application of micro-foam drilling fluid in Daqing Oilfield[J]. Oil Drilling& Production Technology, 2007, 29(5):88-92. [6] 汪桂娟,丁玉兴,陈乐亮,等. 具有特殊结构的微泡沫钻井液技术综述[J]. 钻井液与完井液,2004,21(3):44-52.WANG Guijuan, DING Yuxing, CHEN Leliang, et al. Aphron-base drilling fluid technology[J]. Drilling Fluid & Completion Fluid, 2004, 21(3):44-52. [7] GROWCOCK F B, BELKIN A, FOSDICK M, et al. Recent advances in aphorn drilling fluids[C]. IADC/SPE 97982: 1-7. [8] CRAIG C WHITE, ADRIAN P, CATALIN DAND ROB. Aphron-based drilling fluid: novel technology for drilling depleted formations in the NorthSea[R]. SPE 79 840: 1-6. [9] 唐金库. 泡沫稳定性影响因素及性能评价技术综述[J]. 舰船防化,2008,4(4):1-8.Tang Jinku. Review on influence factors and measurement techniques of foam stability[J]. Chemical Defence on Ships, 2008, 4(4):1-8. [10] 刘德生,陈小榆. 温度对泡沫稳定性的影响研究[J]. 中国海洋平台,2006,21(4):19-22.LIU dengsheng, CHEN xiaoyu. Study on the influence of temperature on foam stability[J]. China Ocean Platform, 2006, 21(4):19-22. [11] 赖晓晴,楼一珊,屈沅治,等. 超高温地热井泡沫钻井流体技术[J]. 钻井液与完井液,2009,26(2):37-38.LAI Xiaoqing, LOU Yishan, QU Yuanzhi, et al. Foam drilling fluid technology for ultra-high temperature geothermal wells[J]. Drilling Fluid & Completion Fluid, 2009, 26(2):37-38. [12] 董海燕,单文军,李艳宁,等. 耐高温泡沫钻井液技术研究概况及研究方向探讨[J]. 地质与勘探,2014,50(5):991-996.DONG Haiyan, SHAN Wenjun, LI Yanning, et al. Research progress and direction of the anti-high temperature foam drilling fluid technology[J]. Geology and Exploration, 2014, 50(5):991-996. [13] 张立明,孙德四,朱友益. 新型高温发泡剂烷基苯烷基磺酸钠性[J]. 西安石油大学学报:自然科学版,2008,23(3):57-60.ZHANG Liming, SUN Desi, ZHU Youyi. Study on the property of a new high-temperature foamer dialkybenze sulfonate[J]. Journal of Xi’an Shiyou University(Natural Science Edition, 2008, 23(3):57-60. -