留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

干热岩抗高温环保水基钻井液体系

刘畅 许洁 冉恒谦

刘畅,许洁,冉恒谦. 干热岩抗高温环保水基钻井液体系[J]. 钻井液与完井液,2021,38(4):412-422 doi: 10.12358/j.issn.1001-5620.2021.04.003
引用本文: 刘畅,许洁,冉恒谦. 干热岩抗高温环保水基钻井液体系[J]. 钻井液与完井液,2021,38(4):412-422 doi: 10.12358/j.issn.1001-5620.2021.04.003
LIU Chang, XU Jie, RAN Hengqian.An environmentally friendly high temperature water based drilling fluid for hot-dry-rock well drilling[J]. Drilling Fluid & Completion Fluid,2021, 38(4):412-422 doi: 10.12358/j.issn.1001-5620.2021.04.003
Citation: LIU Chang, XU Jie, RAN Hengqian.An environmentally friendly high temperature water based drilling fluid for hot-dry-rock well drilling[J]. Drilling Fluid & Completion Fluid,2021, 38(4):412-422 doi: 10.12358/j.issn.1001-5620.2021.04.003

干热岩抗高温环保水基钻井液体系

doi: 10.12358/j.issn.1001-5620.2021.04.003
基金项目: 自然资源部中国地质调查局地质调查项目“共和盆地恰卜恰干热岩试验性开发与评价(中国地质科学院勘探技术研究所)”(20190136)
详细信息
    作者简介:

    刘畅,1995年生,毕业于中国地质大学(北京)地质工程专业获硕士学位,现在主要从事钻井液技术研究工作

    通讯作者:

    许洁,高级工程师,1983年生,主要从事钻井液技术研究与应用工作。E-mail:xujie561@126.com

  • 中图分类号: TE254

An Environmentally Friendly High Temperature Water Based Drilling Fluid for Hot-Dry-Rock Well Drilling

  • 摘要: 传统能源储量日益减少,干热岩类新型能源的开发变得尤为重要。然而干热岩井底温度较高、井深较深且存在造斜井段、其周边有自然保护区,对钻井液的高温稳定性、环保性有着严格的要求。如果能设计高效的抗高温钻井液体系,将会对干热岩的开发起到事半功倍的效果。因此对30余种处理剂进行常规性能测试与热滚老化实验,通过控制变量、正交实验等方法,根据干热岩特征对钻井液的组分、含量进行设计筛选,得到一套干热岩抗高温钻井液体系,并对该体系在不同温度、密度、老化时长的条件下进行抗温性能测试。实验结果表明,该钻井液体系在240 ℃高温下依然有较好的高温稳定性;该体系采用聚合物类处理剂,其内部形成的网架结构稳定,不易被高温破坏,同时针对地层特点而设计的泥饼薄且有韧性、对井壁侵蚀性较小;除此之外还采用了白色无污染原材料,不含磺化、油基成分,性能环保,对周边环境污染性小。

     

  • 图  1  花岗岩地层钻屑

    图  2  干热岩地层及开发示意图

    图  3  3种处理剂200 ℃热滚16 h后的泥饼图

    图  4  3种处理剂200 ℃热滚16 h后的浆液

    图  5  BBJ-4热滚前(左)与热滚后(右)浆液对比

    图  6  4种处理剂组合性能

    图  7  正交实验各项性能极差R的分布

    图  8  泥饼的质量

    图  9  5种膨润土动塑比随膨润土含量增加的变化

    图  10  黄色钠土(左)与黄色凹凸棒土(右)均有明显絮状沉淀

    图  11  不同温度热滚16 h后钻井液滤失量与动切值变化

    表  1  20种降滤失剂在200 ℃热滚16 h前后的性能变化

    名称实验条件PV/mPa·sYP/PaGel/(Pa/ Pa)FL/mLpH热滚后状态
    M1H热滚前13.05.50.7/2.05.012有刺激性气味,泡沫多
    热滚后52.046.05.0/5.5>50.07
    TH热滚前2.500/09.612泥饼黏稠,浆液稀
    热滚后4.02.50/0>30.010
    SDX热滚前9.03.00.5/1.06.612黏度低,泥饼较好、光滑有韧性
    热滚后9.01.50/016.49
    JHDF热滚前14.08.00.2/2.05.412有刺激性气味,泡沫多
    热滚后3.05.01.5/2.0>70.05
    80-ZN热滚前10.05.01.0/1.59.512泥饼质量较好,浆液黏度太低
    热滚后8.01.00/014.89
    NY-1热滚前22.04.50/0.27.012泡沫多,泥饼粗糙、厚
    热滚后3.01.00/0.2>50.08
    聚丙JL-2热滚前9.06.00.5/1.521.012泡沫较多,泥饼稀松不紧密
    热滚后26.020.02.0/4.5>70.010
    三元滤失A热滚前10.03.00/0.56.412泡沫多,泥饼光滑紧密,较厚
    热滚后3.00.50/0.5>60.08
    三元滤失B热滚前3.000/0.59.612泡沫很多,泥饼粗糙
    热滚后21.07.01.0/7.040.09
    二元滤失A热滚前3.00.50/09.412泡沫多,泥饼光滑紧密
    热滚后19.08.51.5/8.042.09
    二元滤失B热滚前3.000/0.59.612泡沫多,泥饼粗糙
    热滚后21.07.01.0/7.040.09
    RJ-1热滚前31.021.02.0/6.020.012泡沫多,泥饼光滑、薄、韧性低
    热滚后3.0−0.50/0>60.07
    RJ-2热滚前11.02.50/1.020.012泡沫多
    热滚后19.011.52.0/4.5>60.07
    RS热滚前14.04.51.5/2.58.012泥饼质量较好
    热滚后14.08.01.25/2.514.010
    聚丙HY热滚前4.01.00/020.012泡沫较多,泥饼质量好
    热滚后2.000/028.09
    磺化沥青粉热滚前2.01.00/0.227.012
    热滚后3.0−0.50/0.5>60.08
    磺化酚醛树脂热滚前2.01.00/0.216.8125 min滤失量>100
    热滚后19.011.52.0/5.0>100.07
    褐煤树脂热滚前18.07.00.5/5.524.012泡沫多
    热滚后9.01.50/1.2>70.09
    腐植酸钾热滚前4.00.50/0.517.012泡沫多
    热滚后14.08.01.0/5.5>60.09
    CZ-JL热滚前14.04.00.5/2.58.812
    热滚后1.000/0>100.08
    下载: 导出CSV

    表  2  10种增黏剂在200 ℃热滚16 h前后的性能

    增黏剂 实验
    条件
    AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    Gel/
    Pa/ Pa
    80A-51 热滚前20.0155.01.2/2.5
    热滚后 5.051.00/0.2
    ZDJ-3热滚前6.033.01.0/1.5
    热滚后 1.0100/0
    BBJ-4热滚前16.5124.50.7/1.0
    热滚后 13.094.00.5/1.5
    CMC-HV-H1热滚前62.53230.53.6/11.0
    热滚后 2.011.00/0.2
    SJ-LV热滚前12.0111.00/0.5
    热滚后 3.021.00/0
    SJ-20热滚前52.02527.04.5/6.5
    热滚后 3.030.50/0
    PAC-HV-2热滚前15.5141.50/0
    热滚后 2.511.50/0.5
    PAC-HV-3热滚前10.091.00/0
    热滚后 1.52−0.50/0
    黄原胶热滚前22.51012.55.5/7.5
    热滚后 1.0100/0
    SL-2热滚前8.062.00/0.5
    热滚后 6.051.00/0
    下载: 导出CSV

    表  3  正交实验配方

    配方RS/%BBJ-4/%80-ZN/%SDX/%
    1#0.40.30.20.4
    2#0.40.50.50.5
    3#0.41.00.70.6
    4#0.60.30.50.6
    5#0.60.50.70.4
    6#0.61.00.20.5
    7#0.80.30.70.5
    8#0.80.50.20.6
    9#0.81.00.50.4
    下载: 导出CSV

    表  4  正交实验配方结果(200 ℃热滚16 h后的性能)

    配方pHAV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    FL/
    mL
    1#1025.01510.014.2
    2#1028.01414.013.2
    3#932.51616.510.8
    4#926.51511.510.8
    5#930.01515.010.8
    6#933.01617.09.6
    7#1033.51914.59.2
    8#1031.51813.510.0
    9#936.51818.59.8
    下载: 导出CSV

    表  5  膨润土比例优选(总土含量为3%)

    白色钠土∶国标钠土AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    Gel/
    Pa/Pa
    FL/
    mL
    3∶124.5186.50.5/0.512.8
    2∶129.51910.51.2/1.512.8
    1∶13.02011.01.0/1.212.4
    1∶230.01911.01.0/1.511.8
    1∶326.0179.00.7/1.012.2
    下载: 导出CSV

    表  6  膨润土含量优选(在200 ℃热滚16 h)

    膨润土/
    %
    AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    Gel/
    Pa/Pa
    FL/
    mL
    218.015.03.00/018.4
    324.518.06.50.5/0.512.8
    447.031.016.02.0/2.08.4
    557.535.022.52.0/2.08.0
    679.052.027.02.0/2.07.0
    下载: 导出CSV

    表  7  不同密度钻井液在240 ℃热滚不同时间后的性能

    ρ/
    g·cm−3
    t热滚/
    h
    AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    FL/
    mL
    FLHTHP/
    mL
    1.03037.5307.514.0
    1626.51610.510.6
    2426.01511.010.6
    4824.5168.510.8
    7224.5195.511.0
    1.15037.52710.513.5
    1628.01612.010.0
    2427.01413.010.0
    4825.01213.010.2
    7225.01312.010.2
    1.30052.52131.513.0
    1625.0205.09.8
    2425.5196.59.8
    4824.0186.09.8
    7223.5176.510.0
    1.40066.03828.013.0
    1648.02325.06.0
    2428.01810.06.8
    4826.5188.57.0
    7226.0179.07.4
    1.50066.54323.513.2
    1650.02426.06.2
    2490.04050.018.0
    4846.02026.06.2
    7240.02119.06.5
      注:FLHTHP使用FANN38771型高温滤失仪,在160 ℃、30 min下测定
    下载: 导出CSV

    表  8  干热岩抗高温环保水基钻井液的抗钻屑污染性能

    ρ/
    g·cm−3
    钻屑/
    %
    AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    FL/
    mL
    FLHTHP/
    mL
    1.03533.0258.05.210.6
    1.031027.5198.55.411.0
    1.031523.5176.55.611.5
    1.40548.52523.54.69.8
    1.401045.02322.04.810.0
    1.401543.52716.55.09.6
      注:FLHTHP在160 ℃、30 min下测定
    下载: 导出CSV

    表  9  干热岩抗高温环保水基钻井液热滚前后的润滑性能

    ρ/
    g·cm−3
    摩阻系数
    热滚前热滚后
    1.032.0232.044
    1.152.0272.058
    1.302.0302.062
    1.402.0352.066
    下载: 导出CSV
  • [1] 付亚荣,李明磊,王树义,等. 干热岩勘探开发现状及前景[J]. 石油钻采工艺,2018,40(4):526-540.

    FU Yarong, LI Minglei, WANG Shuyi, et al. Present situation and prospect of hot dry rock exploration and development[J]. Oil Drilling & Production Technology, 2018, 40(4):526-540.
    [2] 卜海,徐同台,孙金声,等. 高温对钻井液中黏土的作用及作用机理[J]. 钻井液与完井液,2010,27(2):23-25,88. doi: 10.3969/j.issn.1001-5620.2010.02.007

    BU Hai, XU Tongtai, SUN Jinsheng, et al. The effect of high temperature on clays in drilling fluids[J]. Drilling Fluid & Completion Fluid, 2010, 27(2):23-25,88. doi: 10.3969/j.issn.1001-5620.2010.02.007
    [3] 单文军,陶士先,蒋睿,等. 干热岩用耐高温钻井液关键技术及进展[J]. 探矿工程(岩土钻掘工程),2018,45(10):52-56.

    SHAN Wenjun, TAO Shixian, JIANG Rui, et al. Key technology and progress in hightemperature resistant drilling fluid for dry rock[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2018, 45(10):52-56.
    [4] 孙金声,黄贤斌,吕开河,等. 提高水基钻井液高温稳定性的方法、技术现状与研究进展[J]. 中国石油大学学报(自然科学版),2019,43(5):73-81.

    SUN Jinsheng, HUANG Xianbin, LYU Kaihe, et al. Methods, technical progress and research advance of improving high-temperature stability of water based drilling fluids[J]. Journal of China University of Petroleum (Edition of Natural Science), 2019, 43(5):73-81.
    [5] 卢俊锋. 废弃聚磺钻井液固液相分离及处理研究[D]. 成都: 西南石油大学, 2018.

    LU Junfeng.Study on solid liquid separation and treatment of waste polysulfonate drilling fluid[D]. Chengdu: Southwest Petroleum University, 2018.
    [6] GALINDO K A, DEVILLE J P, ESPAGNE B J L, et al. Fluorous-based drilling fluid for ultra-high temperature wells[C]. Society of Petroleum Engineers. SPE-166126-MS.
    [7] AUNG T H. High temperature drilling fluids in the cooper-eromanga basin, australia[C]. Society of Petroleum Engineers. doi: 10.2118/14616-MS
    [8] YUZHI X, GONGRANG L , BAOFENG L, et al. Application of super high density drilling fluid under ultra-high temperature on well Shengke-1[C]. Society of Petroleum Engineers. doi: 10.2118/131189-MS
    [9] WENLONG Z, XIAOMING W, YUMING H , et al. Research and application of high-temperature drilling fluid for scientific core drilling project[C]. Society of Petroleum Engineers. doi: 10.2118/188906-MS
    [10] 郑宇轩,单文军,赵长亮,等. 青海共和干热岩GR1井钻井工艺技术[J]. 地质与勘探,2018,54(5):1038-1045.

    ZHENG Yuxuan, SHAN Wenjun, ZHAO Changliang, et al. Qinghai republican hot dry rock GR1 well drilling technology[J]. Geology and Exploration, 2018, 54(5):1038-1045.
    [11] GALINDO K A, ZHA W, ZHOU H, et al. High temperature, high performance water-based drilling fluid for extreme high temperature wells[C]. Society of Petroleum Engineers. doi: 10.2118/173773-MS
    [12] LIU X, GAO Y , HOU W , et al. Non-toxic high temperature polymer drilling fluid significantly improving marine environmental acceptabiiity and reducing cost for offshore drilling[J].International Petroleum Technology Conference. doi: 10.2523/IPTC-19425-MS
    [13] AL-HAMEEDI A T T, ALKINANI H H, DUNN-NORMAN S, et al. Proposing a new eco-friendly drilling fluid additive to enhance the filtration properties of water-based drilling fluid systems[C]. Society of Petroleum Engineers. doi: 10.2118/198651-MS
    [14] 张永青,胡景东,许朋琛,等. HL-FFQH环保型水基钻井液体系的构建及应用[J]. 钻井液与完井液,2019,36(4):437-441,448. doi: 10.3969/j.issn.1001-5620.2019.04.007

    ZHANG Yongqing, HU JingDong, XU Pengchen, et al. Development and application of the environmentally friendly HL-FFQH water base drilling fluid[J]. Drilling Fluid & Completion Fluid, 2019, 36(4):437-441,448. doi: 10.3969/j.issn.1001-5620.2019.04.007
    [15] ZHOU J, NASR-EL-DIN H A. A new application of potassium nitrate as an environmentally friendly clay stabilizer in water-based drilling fluids[C]. Society of Petroleum Engineers. doi: 10.2118/184578-MS
    [16] FRIEDHEIM J E. Second-generation synthetic drilling fluids[C]. Society of Petroleum Engineers. doi: 10.2118/38251-JPT
    [17] ZHU J, YANG Z , LI X , et al. Synergistic effect between wormlike micelles and nanoparticles in stabilizing foams for high temperature stimulation[C]. Society of Petroleum Engineers. doi: 10.2118/191711-18RPTC-MS
    [18] PINO R , ABOUHAMED A , ADDAGALLA A, et al. Not too hot to handle: water based fluid drills high temperature wells[C]. Society of Petroleum Engineers. doi: 10.2118/196796-MS
    [19] PILGUN S, ARAMELEV A. Environmentally compatible drilling fluids[C]. Society of Petroleum Engineers. doi: 10.2118/166847-MS
    [20] AUDIBERT A , ROUSSEAU L, KIEFFER J. Novel high-pressure/high temperature fluid loss reducer for water-based formulation[C]. Society of Petroleum Engineers.
    [21] CESARONI R , REPETTI U. Solved problems of high-density and high-temperature drilling fluid in an environmentally sensitive area[C]. Society of Petroleum Engineers. doi: 10.2118/25701-MS
    [22] WILSON A. Novel drilling fluids enable record high-temperature well offshore Malaysia[C]. Society of Petroleum Engineers. doi: 10.2118/1115-0075-JP
    [23] PANAMARATHUPALAYAM B, MANZOLELOUA C, SEBELIN L, et al. Multifunctional high temperature water-based fluid system[C]. Society of Petroleum Engineers. doi: 10.2118/195009-MS
    [24] 陈作, 许国庆, 蒋漫旗. 国内外干热岩压裂技术现状及发展建议[J/OL]. 石油钻探技术: 1-12[2019-11-25]. http://kns.cnki.net/kcms/detail/11.1763.TE.20191104.1515.004.html.

    CHEN Zuo, XU Guoqing, JIANG Manqi. The current status and development recommendations for dry hot rock fracturing technologies at home and abroad[J/OL]. Petroleum Drilling Techniques: 1-12[2019-11-25]. http://kns.cnki.net/kcms/detail/11.1763.TE.20191104.1515.004.html.
    [25] 张森琦,文冬光,许天福,等. 美国干热岩"地热能前沿瞭望台研究计划"与中美典型EGS场地勘查现状对比[J]. 地学前缘,2019,26(2):321-334.

    ZHANG Senqi, WEN Dongguang, XU Tianfu, et al. Frontier observatory for research in geothermal energy project and comparsion of typical EGS site exploration status in China and U. S[J]. Earth Science Frontiers, 2019, 26(2):321-334.
    [26] 张盛生,张磊,田成成,等. 青海共和盆地干热岩赋存地质特征及开发潜力[J]. 地质力学学报,2019,25(4):501-508.

    ZHANG Shengsheng, ZHANG Lei, TIAN Chengcheng,et al. Occurrency geological characteristics and development potential of hot dry rocks in Qinghai Gonghe basin[J]. Journal of Geomechanics, 2019, 25(4):501-508.
    [27] 张盛生,张磊,蔡敬寿,等. 共和盆地恰卜恰地区干热岩资源量初步估算及评价[J]. 青海大学学报,2018,36(4):75-78,85.

    ZHANG Shengsheng, ZHANG Lei, CAI Jingshou, et al. Preliminary estimation and evaluation of hot dry rock resources in Qiabuqia area of Gonghe basin[J]. Journal of Qinghai University, 2018, 36(4):75-78,85.
    [28] 思娜,叶海超,牛新明,等. 油气钻井技术在干热岩开发中的适应性分析[J]. 石油钻探技术,2019,47(4):35-40.

    SI Na, YE Haichao, NIU Xinming, et al. Analysis on the adaptability of oil and gas drilling technologies in development for hot dry rocks[J]. Petroleum Drilling Techniques, 2019, 47(4):35-40.
    [29] 叶顺友,杨灿,王海斌,等. 海南福山凹陷花东1R井干热岩钻井关键技术[J]. 石油钻探技术,2019,47(4):10-16.

    YE Shunyou, YANG Can, WANG Haibin, et al. Key drilling technologies for hot dry rock in well HD-1R in the Hainan Fushan sag[J]. Petroleum Drilling Techniques, 2019, 47(4):10-16.
    [30] 梁文利. 干热岩钻井液技术新进展[J]. 钻井液与完井液,2018,35(4):7-13. doi: 10.3969/j.issn.1001-5620.2018.04.002

    LIANG Wenli. Progress on drilling fluid technology for hot dry rock drilling[J]. Drilling Fluid & Completion Fluid, 2018, 35(4):7-13. doi: 10.3969/j.issn.1001-5620.2018.04.002
    [31] 许天福,胡子旭,李胜涛,等. 增强型地热系统: 国际研究进展与我国研究现状[J]. 地质学报,2018,92(9):1936-1947. doi: 10.3969/j.issn.0001-5717.2018.09.012

    XU Tianfu,HU Zixu,LI Shengtao,et al. Enhanced geothermal system: international progresses and research status of China[J]. Acta Geologica Sinica, 2018, 92(9):1936-1947. doi: 10.3969/j.issn.0001-5717.2018.09.012
    [32] 李旭方,熊正强. 抗高温环保水基钻井液研究进展[J]. 探矿工程(岩土钻掘工程),2019,46(9):32-39.

    LI Xufang, XIONG Zhengqiang. Research progress on high temperature resistant and environment friendly water-based drilling fluids[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2019, 46(9):32-39.
    [33] 秦耀军,李晓东,赵长亮,等. 耐240℃高温钻井液在青海共和盆地高温干热岩钻探施工中的应用[J]. 地质与勘探,2019,55(5):1302-1313.

    QIN Yaojun, LI Xiaodong, ZHAO Changliang, et al. Application of high temperature (240℃) -resistant fluid to a HDR drilling project in the Gonghe basin,Qinghai province[J]. Geology and Exploration, 2019, 55(5):1302-1313.
    [34] 董海燕,单文军,李艳宁,等. 耐高温泡沫钻井液技术研究概况及研究方向探讨[J]. 地质与勘探,2014,50(5):0991-0996.

    DONG Haiyan, SHAN Wenjun, LI Yanning, et al. Research progress and direction of the anti-high temperature foam drilling fluid technology[J]. Geology and Exploration, 2014, 50(5):0991-0996.
    [35] 许洁,乌效鸣,王稳石,等. 松科2井抗超高温钻井液技术[J]. 钻井液与完井液,2018,35(2):29-34,39. doi: 10.3969/j.issn.1001-5620.2018.02.004

    XU Jie, WU Xiaoming, WANG Wenshi, et al. Ultra-high temperature drilling fluid technology of well Songke-2[J]. Drilling Fluid & Completion Fluid, 2018, 35(2):29-34,39. doi: 10.3969/j.issn.1001-5620.2018.02.004
    [36] 黄雪琴,孟庆昆. 液氮应用于干热岩钻探的可行性探讨[J]. 探矿工程(岩土钻掘工程),2018,45(2):22-25.

    HUANG Xueqin, MENG Qingkun. Feasibility study on application of liquid nitrogen in hot rock drilling[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2018, 45(2):22-25.
    [37] 杨莉,姚建华,罗平亚. 钻井液常见污染问题及处理方法探讨[J]. 钻井液与完井液,2012,29(2):47-50,93. doi: 10.3969/j.issn.1001-5620.2012.02.016

    YANG Li, YAO Jianhua, LUO Pingya. Common drilling fluid pollution problems and solutions[J]. Drilling Fluid & Completion Fluid, 2012, 29(2):47-50,93. doi: 10.3969/j.issn.1001-5620.2012.02.016
  • 加载中
图(11) / 表(9)
计量
  • 文章访问数:  695
  • HTML全文浏览量:  262
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-01
  • 网络出版日期:  2023-11-09
  • 刊出日期:  2021-07-31

目录

    /

    返回文章
    返回